Skip to content

Code of our winning entry to NTIRE 2018 super-resolution challenge, CVPR Workshop 2018

Notifications You must be signed in to change notification settings

Forrest-ht/wdsr_ntire2018

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

19 Commits
 
 
 
 
 
 

Repository files navigation

Wide Activation for Efficient and Accurate Image Super-Resolution

Tech Report | Approach | Results | TensorFlow | Other Implementations | Bibtex

Update (Oct, 2018): We have re-implemented WDSR on TensorFlow for end-to-end training and testing. Pre-trained models are released. The runtime speed of weight normalization on tensorflow is also optimized.

Run

  1. Requirements:
    • Install PyTorch (tested on release 0.4.0 and 0.4.1).
    • Clone EDSR-Pytorch as backbone training framework.
  2. Training and Validation:
    • Copy wdsr_a.py, wdsr_b.py into EDSR-PyTorch/src/model/.
    • Modify EDSR-PyTorch/src/option.py and EDSR-PyTorch/src/demo.sh to support --n_feats, --block_feats, --[r,g,b]_mean option (please find reference in issue #7, #8).
    • Launch training with EDSR-Pytorch as backbone training framework.
  3. Still have questions?
    • If you still have questions, please first search over closed issues. If the problem is not solved, please open a new issue.

Overall Performance

Network Parameters DIV2K (val) PSNR
EDSR Baseline 1,372,318 34.61
WDSR Baseline 1,190,100 34.77

We measured PSNR using DIV2K 0801 ~ 0900 (trained on 0000 ~ 0800) on RGB channels without self-ensemble. Both baseline models have 16 residual blocks.

More results:

Number of Residual Blocks13
SR NetworkEDSRWDSR-AWDSR-BEDSRWDSR-AWDSR-B
Parameters0.26M0.08M0.08M0.41M0.23M0.23M
DIV2K (val) PSNR33.21033.32333.43434.04334.16334.205
Number of Residual Blocks58
SR NetworkEDSRWDSR-AWDSR-BEDSRWDSR-AWDSR-B
Parameters0.56M0.37M0.37M0.78M0.60M0.60M
DIV2K (val) PSNR34.28434.38834.40934.45734.54134.536

Comparisons of EDSR and our proposed WDSR-A, WDSR-B using identical settings to EDSR baseline model for image bicubic x2 super-resolution on DIV2K dataset.

WDSR Network Architecture

Left: vanilla residual block in EDSR. Middle: wide activation. Right: wider activation with linear low-rank convolution. The proposed wide activation WDSR-A, WDSR-B have similar merits with MobileNet V2 but different architectures and much better PSNR.

Weight Normalization vs. Batch Normalization and No Normalization

Training loss and validation PSNR with weight normalization, batch normalization or no normalization. Training with weight normalization has faster convergence and better accuracy.

Other Implementations

Citing

Please consider cite WDSR for image super-resolution and compression if you find it helpful.

@article{yu2018wide,
  title={Wide Activation for Efficient and Accurate Image Super-Resolution},
  author={Yu, Jiahui and Fan, Yuchen and Yang, Jianchao and Xu, Ning and Wang, Xinchao and Huang, Thomas S},
  journal={arXiv preprint arXiv:1808.08718},
  year={2018}
}

@inproceedings{fan2018wide,
  title={Wide-activated Deep Residual Networks based Restoration for BPG-compressed Images},
  author={Fan, Yuchen and Yu, Jiahui and Huang, Thomas S},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops},
  pages={2621--2624},
  year={2018}
}

About

Code of our winning entry to NTIRE 2018 super-resolution challenge, CVPR Workshop 2018

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%