-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
feat: CQDG-719 refactor varaints normalize
- Loading branch information
1 parent
bcad8fc
commit 25b3e01
Showing
2 changed files
with
172 additions
and
25 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,48 +1,100 @@ | ||
from __future__ import annotations | ||
|
||
from datetime import datetime | ||
|
||
from airflow import DAG | ||
from airflow.decorators import task | ||
from airflow.models import Param | ||
from airflow.operators.python import get_current_context | ||
|
||
from lib.config import default_config_file, study_code, etl_variant_config | ||
from lib.operators.spark import SparkOperator | ||
|
||
class NormalizeVariants(SparkOperator): | ||
template_fields = [*SparkOperator.template_fields, 'arguments', 'dataset_batch'] | ||
|
||
def __init__(self, | ||
dataset_batch, | ||
**kwargs): | ||
super().__init__(**kwargs) | ||
self.dataset_batch = dataset_batch | ||
|
||
from lib.config import batch, default_config_file, study_code, spark_large_conf, \ | ||
etl_variant_config, spark_small_conf | ||
def execute(self, **kwargs): | ||
# Append dataset and batch to arguments at runtime. | ||
self.arguments.append('--dataset') | ||
self.arguments.append(self.dataset_batch[0]) | ||
self.arguments.append('--batch') | ||
self.arguments.append(self.dataset_batch[1]) | ||
super().execute(**kwargs) | ||
|
||
normalized_etl = etl_variant_config \ | ||
.with_spark_class('bio.ferlab.etl.normalized.RunNormalizedGenomic') \ | ||
.args( | ||
@task | ||
def extract_params() -> list[(str, list[str])]: | ||
"""Extract input arguments at runtime. | ||
Returns: List of datasets with their batches | ||
""" | ||
context = get_current_context() | ||
items = context["params"]["dateset_batches"] | ||
r_list = [] | ||
|
||
for item in items: | ||
bs = item['batches'] | ||
d = item['dataset'] | ||
for b in bs: | ||
r_list.append((d, b)) | ||
return r_list | ||
|
||
def normalized_etl(run_time_params, name): | ||
return (etl_variant_config | ||
.with_spark_class('bio.ferlab.etl.normalized.RunNormalizedGenomic') | ||
.args( | ||
'--config', default_config_file, | ||
'--steps', 'default', | ||
'--app-name', 'variant_task_consequences', | ||
'--owner', '{{ params.owner }}', | ||
'--dataset', '{{ params.dataset }}', | ||
'--batch', batch, | ||
'--study-code', study_code | ||
) \ | ||
.add_package('io.projectglow:glow-spark3_2.12:2.0.0') \ | ||
.add_spark_conf({'spark.jars.excludes': 'org.apache.hadoop:hadoop-client,' | ||
'io.netty:netty-all,' | ||
'io.netty:netty-handler,' | ||
'io.netty:netty-transport-native-epoll', | ||
'spark.hadoop.io.compression.codecs': 'io.projectglow.sql.util.BGZFCodec', | ||
}) \ | ||
|
||
|
||
def normalize_variant_operator(name): | ||
etl = normalized_etl if name == 'snv' else normalized_etl | ||
return etl.prepend_args(name).operator( | ||
'--study-code', study_code) | ||
.add_package('io.projectglow:glow-spark3_2.12:2.0.0') | ||
.add_spark_conf({'spark.jars.excludes': 'org.apache.hadoop:hadoop-client,' | ||
'io.netty:netty-all,' | ||
'io.netty:netty-handler,' | ||
'io.netty:netty-transport-native-epoll', | ||
'spark.hadoop.io.compression.codecs': 'io.projectglow.sql.util.BGZFCodec', | ||
}) | ||
.partial( | ||
class_to_instantiate=NormalizeVariants, | ||
task_id=f'normalize-{name}', | ||
name=f'normalize-{name}') | ||
.expand(dataset_batch=run_time_params)) | ||
|
||
|
||
with DAG( | ||
dag_id='etl-normalize-variants', | ||
dag_id='etl-normalize-variants-TEST', | ||
start_date=datetime(2022, 1, 1), | ||
schedule_interval=None, | ||
params={ | ||
'study_code': Param('CAG', type='string'), | ||
'owner': Param('jmichaud', type='string'), | ||
'dataset': Param('dataset_default', type='string'), | ||
'batch': Param('annotated_vcf', type='string'), | ||
'project': Param('cqdg', type='string'), | ||
'dateset_batches': Param( | ||
[ | ||
{'dataset': 'dataset_dataset1', 'batches': ['annotated_vcf1','annotated_vcf2']}, | ||
{'dataset': 'dataset_dataset2', 'batches': ['annotated_vcf']} | ||
], | ||
schema = { | ||
"type": "array", | ||
"minItems": 1, | ||
"items": { | ||
"type": "object", | ||
"default": {'dataset': 'dataset_default', 'batches': ['annotated_vcf']}, | ||
"properties": { | ||
"dataset": {"type": "string"}, | ||
"batches": {"type": "array", "items": {"type": "string"}}, | ||
}, | ||
"required": ["dataset", "batches"] | ||
}, | ||
} | ||
), | ||
}, | ||
) as dag: | ||
normalize_variant_operator('snv') >> normalize_variant_operator('consequences') | ||
params = extract_params() | ||
|
||
normalized_etl(run_time_params = params, name='snv') >> normalized_etl(run_time_params = params, name='consequences') |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,95 @@ | ||
from __future__ import annotations | ||
|
||
from datetime import datetime | ||
|
||
from airflow import DAG | ||
from airflow.decorators import task | ||
from airflow.models import Param | ||
from airflow.operators.python import get_current_context | ||
|
||
from lib.config import default_config_file, study_code, etl_variant_config | ||
from lib.operators.spark import SparkOperator | ||
|
||
|
||
with DAG( | ||
dag_id='etl-normalize-variants-TEST', | ||
start_date=datetime(2022, 1, 1), | ||
schedule_interval=None, | ||
params={ | ||
'study_code': Param('CAG', type='string'), | ||
'owner': Param('jmichaud', type='string'), | ||
'project': Param('cqdg', type='string'), | ||
'dateset_batches': Param( | ||
[ | ||
{'dataset': 'dataset_dataset1', 'batches': ['annotated_vcf1','annotated_vcf2']}, | ||
{'dataset': 'dataset_dataset2', 'batches': ['annotated_vcf']} | ||
], | ||
schema = { | ||
"type": "array", | ||
"minItems": 1, | ||
"items": { | ||
"type": "object", | ||
"default": {'dataset': 'dataset_default', 'batches': ['annotated_vcf']}, | ||
"properties": { | ||
"dataset": {"type": "string"}, | ||
"batches": {"type": "array", "items": {"type": "string"}}, | ||
}, | ||
"required": ["dataset", "batches"] | ||
}, | ||
} | ||
), | ||
}, | ||
) as dag: | ||
|
||
|
||
@task | ||
def extract_params() -> list[(str, list[str])]: | ||
"""Extract input arguments at runtime. | ||
Returns: List of datasets with their batches | ||
""" | ||
context = get_current_context() | ||
items = context["params"]["dateset_batches"] | ||
r_list = [] | ||
|
||
for item in items: | ||
bs = item['batches'] | ||
d = item['dataset'] | ||
for b in bs: | ||
r_list.append((d, b)) | ||
return r_list | ||
|
||
class NormalizeVariants(SparkOperator): | ||
template_fields = [*SparkOperator.template_fields, 'arguments', 'dataset_batch'] | ||
|
||
def __init__(self, | ||
dataset_batch, | ||
**kwargs): | ||
super().__init__(**kwargs) | ||
self.dataset_batch = dataset_batch | ||
|
||
def execute(self, **kwargs): | ||
# Append dataset and batch to arguments at runtime. | ||
self.arguments.append('--dataset') | ||
self.arguments.append(self.dataset_batch[0]) | ||
self.arguments.append('--batch') | ||
self.arguments.append(self.dataset_batch[1]) | ||
super().execute(**kwargs) | ||
|
||
etl_variant_config \ | ||
.with_spark_class('bio.ferlab.etl.normalized.RunNormalizedGenomic') \ | ||
.args( | ||
'--config', default_config_file, | ||
'--steps', 'default', | ||
'--app-name', 'variant_task_consequences', | ||
'--owner', '{{ params.owner }}', | ||
'--study-code', study_code | ||
) \ | ||
.partial( | ||
class_to_instantiate=NormalizeVariants, | ||
task_id='normalize_variants_snv', | ||
name='normalize-variants-snv' | ||
) \ | ||
.expand(dataset_batch=extract_params()) | ||
|
||
|
||
|