$ python build.py -h
usage: build.py [-h] [--top_n TOP_N] [--drug_descriptor {dragon7,mordred}]
[--cell_feature {rnaseq,snps}]
[--cell_feature_subset {lincs1000,oncogenes,all}]
[--format {csv,tsv,parquet,hdf5,feather}]
[--response_type {reg,bin}] [--labels]
[--target {AUC,IC50,EC50,EC50se,R2fit,Einf,HS,AAC1,AUC1,DSS1}]
[--scaled]
optional arguments:
-h, --help show this help message and exit
--top_n TOP_N Number of cancer types to be included. Default 6
--drug_descriptor {dragon7,mordred}
Drug descriptors. Default dragon7
--cell_feature {rnaseq,snps}
Cell line features. Default rnaseq
--cell_feature_subset {lincs1000,oncogenes,all}
Subset of cell line features. Default lincs1000
--format {csv,tsv,parquet,hdf5,feather}
Dataframe file format. Default hdf5
--response_type {reg,bin}
Response type. Regression(reg) or Binary
Classification(bin). Default reg
--labels Contains Cell and Drug label. Default False
--target {AUC,IC50,EC50,EC50se,R2fit,Einf,HS,AAC1,AUC1,DSS1}
Response label value. Default AUC
--scaled Apply scaling. Default False
forked from hyoo/topN_generator
-
Notifications
You must be signed in to change notification settings - Fork 0
ECP-CANDLE/topN_generator
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
About
No description, website, or topics provided.
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published
Languages
- Jupyter Notebook 98.0%
- Python 1.8%
- Shell 0.2%