๐ Lite.Ai.ToolKit: A lite C++ toolkit of awesome AI models, such as Object Detection, Face Detection, Face Recognition, Segmentation, Matting, etc. See Model Zoo and ONNX Hub, MNN Hub, TNN Hub, NCNN Hub.
Most of my time now is focused on LLM/VLM Inference. Please check ๐Awesome-LLM-Inference , ๐Awesome-SD-Inference and ๐CUDA-Learn-Notes for more details. Now, lite.ai.toolkit is mainly maintained by ๐@wangzijian1010.
@misc{lite.ai.toolkit@2021,
title={lite.ai.toolkit: A lite C++ toolkit of awesome AI models.},
url={https://github.com/DefTruth/lite.ai.toolkit},
note={Open-source software available at https://github.com/DefTruth/lite.ai.toolkit},
author={DefTruth, wangzijian1010 etc},
year={2021}
}
- Simply and User friendly. Simply and Consistent syntax like lite::cv::Type::Class, see examples.
- Minimum Dependencies. Only OpenCV and ONNXRuntime are required by default, see build.
- Many Models Supported. 300+ C++ implementations and 500+ weights ๐ Supported-Matrix.
Download prebuilt lite.ai.toolkit library from tag/v0.2.0, or just build it from source:
git clone --depth=1 https://github.com/DefTruth/lite.ai.toolkit.git # latest
cd lite.ai.toolkit && sh ./build.sh # >= 0.2.0, support Linux only, tested on Ubuntu 20.04.6 LTS
#include "lite/lite.h"
int main(int argc, char *argv[]) {
std::string onnx_path = "yolov5s.onnx";
std::string test_img_path = "test_yolov5.jpg";
std::string save_img_path = "test_results.jpg";
auto *yolov5 = new lite::cv::detection::YoloV5(onnx_path);
std::vector<lite::types::Boxf> detected_boxes;
cv::Mat img_bgr = cv::imread(test_img_path);
yolov5->detect(img_bgr, detected_boxes);
lite::utils::draw_boxes_inplace(img_bgr, detected_boxes);
cv::imwrite(save_img_path, img_bgr);
delete yolov5;
return 0;
}
You can download the prebuilt lite.ai.tooklit library and test resources from tag/v0.2.0.
export LITE_AI_TAG_URL=https://github.com/DefTruth/lite.ai.toolkit/releases/download/v0.2.0
wget ${LITE_AI_TAG_URL}/lite-ort1.17.1+ocv4.9.0+ffmpeg4.2.2-linux-x86_64.tgz
wget ${LITE_AI_TAG_URL}/yolov5s.onnx && wget ${LITE_AI_TAG_URL}/test_yolov5.jpg
๐๐TensorRT: Boost inference performance with NVIDIA GPU via TensorRT.
Run bash ./build.sh tensorrt
to build lite.ai.toolkit with TensorRT support, and then test yolov5 with the codes below. NOTE: lite.ai.toolkit need TensorRT 10.x (or later) and CUDA 12.x (or later). Please check build.sh, tensorrt-linux-x86_64-install.zh.md, test_lite_yolov5.cpp and NVIDIA/TensorRT for more details.
// trtexec --onnx=yolov5s.onnx --saveEngine=yolov5s.engine
auto *yolov5 = new lite::trt::cv::detection::YOLOV5(engine_path);
To quickly setup lite.ai.toolkit
, you can follow the CMakeLists.txt
listed as belows. ๐๐
set(lite.ai.toolkit_DIR YOUR-PATH-TO-LITE-INSTALL)
find_package(lite.ai.toolkit REQUIRED PATHS ${lite.ai.toolkit_DIR})
add_executable(lite_yolov5 test_lite_yolov5.cpp)
target_link_libraries(lite_yolov5 ${lite.ai.toolkit_LIBS})
The goal of lite.ai.toolkit is not to abstract on top of MNN and ONNXRuntime. So, you can use lite.ai.toolkit mixed with MNN(-DENABLE_MNN=ON, default OFF
) or ONNXRuntime(-DENABLE_ONNXRUNTIME=ON, default ON
). The lite.ai.toolkit installation package contains complete MNN and ONNXRuntime. The workflow may looks like:
#include "lite/lite.h"
// 0. use yolov5 from lite.ai.toolkit to detect objs.
auto *yolov5 = new lite::cv::detection::YoloV5(onnx_path);
// 1. use OnnxRuntime or MNN to implement your own classfier.
interpreter = std::shared_ptr<MNN::Interpreter>(MNN::Interpreter::createFromFile(mnn_path));
// or: session = new Ort::Session(ort_env, onnx_path, session_options);
classfier = interpreter->createSession(schedule_config);
// 2. then, classify the detected objs use your own classfier ...
The included headers of MNN and ONNXRuntime can be found at mnn_config.h and ort_config.h.
๐๏ธ Check the detailed Quick Start๏ผClick here!
You can download the prebuilt lite.ai.tooklit library and test resources from tag/v0.2.0.
export LITE_AI_TAG_URL=https://github.com/DefTruth/lite.ai.toolkit/releases/download/v0.2.0
wget ${LITE_AI_TAG_URL}/lite-ort1.17.1+ocv4.9.0+ffmpeg4.2.2-linux-x86_64.tgz
wget ${LITE_AI_TAG_URL}/yolov5s.onnx && wget ${LITE_AI_TAG_URL}/test_yolov5.jpg
tar -zxvf lite-ort1.17.1+ocv4.9.0+ffmpeg4.2.2-linux-x86_64.tgz
write YOLOv5 example codes and name it test_lite_yolov5.cpp
:
#include "lite/lite.h"
int main(int argc, char *argv[]) {
std::string onnx_path = "yolov5s.onnx";
std::string test_img_path = "test_yolov5.jpg";
std::string save_img_path = "test_results.jpg";
auto *yolov5 = new lite::cv::detection::YoloV5(onnx_path);
std::vector<lite::types::Boxf> detected_boxes;
cv::Mat img_bgr = cv::imread(test_img_path);
yolov5->detect(img_bgr, detected_boxes);
lite::utils::draw_boxes_inplace(img_bgr, detected_boxes);
cv::imwrite(save_img_path, img_bgr);
delete yolov5;
return 0;
}
cmake_minimum_required(VERSION 3.10)
project(lite_yolov5)
set(CMAKE_CXX_STANDARD 17)
set(lite.ai.toolkit_DIR YOUR-PATH-TO-LITE-INSTALL)
find_package(lite.ai.toolkit REQUIRED PATHS ${lite.ai.toolkit_DIR})
if (lite.ai.toolkit_Found)
message(STATUS "lite.ai.toolkit_INCLUDE_DIRS: ${lite.ai.toolkit_INCLUDE_DIRS}")
message(STATUS " lite.ai.toolkit_LIBS: ${lite.ai.toolkit_LIBS}")
message(STATUS " lite.ai.toolkit_LIBS_DIRS: ${lite.ai.toolkit_LIBS_DIRS}")
endif()
add_executable(lite_yolov5 test_lite_yolov5.cpp)
target_link_libraries(lite_yolov5 ${lite.ai.toolkit_LIBS})
mkdir build && cd build && cmake .. && make -j1
Then, export the lib paths to LD_LIBRARY_PATH
which listed by lite.ai.toolkit_LIBS_DIRS
.
export LD_LIBRARY_PATH=YOUR-PATH-TO-LITE-INSTALL/lib:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH=YOUR-PATH-TO-LITE-INSTALL/third_party/opencv/lib:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH=YOUR-PATH-TO-LITE-INSTALL/third_party/onnxruntime/lib:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH=YOUR-PATH-TO-LITE-INSTALL/third_party/MNN/lib:$LD_LIBRARY_PATH # if -DENABLE_MNN=ON
cp ../yolov5s.onnx ../test_yolov.jpg .
./lite_yolov5
The output logs:
LITEORT_DEBUG LogId: ../examples/hub/onnx/cv/yolov5s.onnx
=============== Input-Dims ==============
Name: images
Dims: 1
Dims: 3
Dims: 640
Dims: 640
=============== Output-Dims ==============
Output: 0 Name: pred Dim: 0 :1
Output: 0 Name: pred Dim: 1 :25200
Output: 0 Name: pred Dim: 2 :85
Output: 1 Name: output2 Dim: 0 :1
......
Output: 3 Name: output4 Dim: 1 :3
Output: 3 Name: output4 Dim: 2 :20
Output: 3 Name: output4 Dim: 3 :20
Output: 3 Name: output4 Dim: 4 :85
========================================
detected num_anchors: 25200
generate_bboxes num: 48
- / = not supported now.
- โ = known work and official supported now.
- โ๏ธ = known work, but unofficial supported now.
- โ = in my plan, but not coming soon, maybe a few months later.
Class | Class | Class | Class | Class | System | Engine |
---|---|---|---|---|---|---|
โ YOLOv5 | โ YOLOv6 | โ YOLOv8 | โ YOLOv8Face | โ YOLOv5Face | Linux | TensorRT |
โ YOLOX | โ YOLOv5BlazeFace | โ StableDiffusion | / | / | Linux | TensorRT |
Class | Size | Type | Demo | ONNXRuntime | MNN | NCNN | TNN | Linux | MacOS | Windows | Android |
---|---|---|---|---|---|---|---|---|---|---|---|
YoloV5 | 28M | detection | demo | โ | โ | โ | โ | โ | โ๏ธ | โ๏ธ | โ |
YoloV3 | 236M | detection | demo | โ | / | / | / | โ | โ๏ธ | โ๏ธ | / |
TinyYoloV3 | 33M | detection | demo | โ | / | / | / | โ | โ๏ธ | โ๏ธ | / |
YoloV4 | 176M | detection | demo | โ | / | / | / | โ | โ๏ธ | โ๏ธ | / |
SSD | 76M | detection | demo | โ | / | / | / | โ | โ๏ธ | โ๏ธ | / |
SSDMobileNetV1 | 27M | detection | demo | โ | / | / | / | โ | โ๏ธ | โ๏ธ | / |
YoloX | 3.5M | detection | demo | โ | โ | โ | โ | โ | โ๏ธ | โ๏ธ | โ |
TinyYoloV4VOC | 22M | detection | demo | โ | / | / | / | โ | โ๏ธ | โ๏ธ | / |
TinyYoloV4COCO | 22M | detection | demo | โ | / | / | / | โ | โ๏ธ | โ๏ธ | / |
YoloR | 39M | detection | demo | โ | โ | โ | โ | โ | โ๏ธ | โ๏ธ | โ |
ScaledYoloV4 | 270M | detection | demo | โ | / | / | / | โ | โ๏ธ | โ๏ธ | / |
EfficientDet | 15M | detection | demo | โ | / | / | / | โ | โ๏ธ | โ๏ธ | / |
EfficientDetD7 | 220M | detection | demo | โ | / | / | / | โ | โ๏ธ | โ๏ธ | / |
EfficientDetD8 | 322M | detection | demo | โ | / | / | / | โ | โ๏ธ | โ๏ธ | / |
YOLOP | 30M | detection | demo | โ | โ | โ | โ | โ | โ๏ธ | โ๏ธ | โ |
NanoDet | 1.1M | detection | demo | โ | โ | โ | โ | โ | โ๏ธ | โ๏ธ | โ |
NanoDetPlus | 4.5M | detection | demo | โ | โ | โ | โ | โ | โ๏ธ | โ๏ธ | โ |
NanoDetEffi... | 12M | detection | demo | โ | โ | โ | โ | โ | โ๏ธ | โ๏ธ | โ |
YoloX_V_0_1_1 | 3.5M | detection | demo | โ | โ | โ | โ | โ | โ๏ธ | โ๏ธ | โ |
YoloV5_V_6_0 | 7.5M | detection | demo | โ | โ | โ | โ | โ | โ๏ธ | โ๏ธ | โ |
GlintArcFace | 92M | faceid | demo | โ | โ | โ | โ | โ | โ๏ธ | โ๏ธ | โ |
GlintCosFace | 92M | faceid | demo | โ | โ | โ | โ | โ | โ๏ธ | โ๏ธ | / |
GlintPartialFC | 170M | faceid | demo | โ | โ | โ | โ | โ | โ๏ธ | โ๏ธ | / |
FaceNet | 89M | faceid | demo | โ | โ | โ | โ | โ | โ๏ธ | โ๏ธ | / |
FocalArcFace | 166M | faceid | demo | โ | โ | โ | โ | โ | โ๏ธ | โ๏ธ | / |
FocalAsiaArcFace | 166M | faceid | demo | โ | โ | โ | โ | โ | โ๏ธ | โ๏ธ | / |
TencentCurricularFace | 249M | faceid | demo | โ | โ | โ | โ | โ | โ๏ธ | โ๏ธ | / |
TencentCifpFace | 130M | faceid | demo | โ | โ | โ | โ | โ | โ๏ธ | โ๏ธ | / |
CenterLossFace | 280M | faceid | demo | โ | โ | โ | โ | โ | โ๏ธ | โ๏ธ | / |
SphereFace | 80M | faceid | demo | โ | โ | โ | โ | โ | โ๏ธ | โ๏ธ | / |
PoseRobustFace | 92M | faceid | demo | โ | / | / | / | โ | โ๏ธ | โ๏ธ | / |
NaivePoseRobustFace | 43M | faceid | demo | โ | / | / | / | โ | โ๏ธ | โ๏ธ | / |
MobileFaceNet | 3.8M | faceid | demo | โ | โ | โ | โ | โ | โ๏ธ | โ๏ธ | โ |
CavaGhostArcFace | 15M | faceid | demo | โ | โ | โ | โ | โ | โ๏ธ | โ๏ธ | โ |
CavaCombinedFace | 250M | faceid | demo | โ | โ | โ | โ | โ | โ๏ธ | โ๏ธ | / |
MobileSEFocalFace | 4.5M | faceid | demo | โ | โ | โ | โ | โ | โ๏ธ | โ๏ธ | โ |
RobustVideoMatting | 14M | matting | demo | โ | โ | / | โ | โ | โ๏ธ | โ๏ธ | โ |
MGMatting | 113M | matting | demo | โ | โ | / | โ | โ | โ๏ธ | โ๏ธ | / |
MODNet | 24M | matting | demo | โ | โ | โ | โ | โ | โ๏ธ | โ๏ธ | / |
MODNetDyn | 24M | matting | demo | โ | / | / | / | โ | โ๏ธ | โ๏ธ | / |
BackgroundMattingV2 | 20M | matting | demo | โ | โ | / | โ | โ | โ๏ธ | โ๏ธ | / |
BackgroundMattingV2Dyn | 20M | matting | demo | โ | / | / | / | โ | โ๏ธ | โ๏ธ | / |
UltraFace | 1.1M | face::detect | demo | โ | โ | โ | โ | โ | โ๏ธ | โ๏ธ | โ |
RetinaFace | 1.6M | face::detect | demo | โ | โ | โ | โ | โ | โ๏ธ | โ๏ธ | โ |
FaceBoxes | 3.8M | face::detect | demo | โ | โ | โ | โ | โ | โ๏ธ | โ๏ธ | โ |
FaceBoxesV2 | 3.8M | face::detect | demo | โ | โ | โ | โ | โ | โ๏ธ | โ๏ธ | โ |
SCRFD | 2.5M | face::detect | demo | โ | โ | โ | โ | โ | โ๏ธ | โ๏ธ | โ |
YOLO5Face | 4.8M | face::detect | demo | โ | โ | โ | โ | โ | โ๏ธ | โ๏ธ | โ |
PFLD | 1.0M | face::align | demo | โ | โ | โ | โ | โ | โ๏ธ | โ๏ธ | โ |
PFLD98 | 4.8M | face::align | demo | โ | โ | โ | โ | โ | โ๏ธ | โ๏ธ | โ |
MobileNetV268 | 9.4M | face::align | demo | โ | โ | โ | โ | โ | โ๏ธ | โ๏ธ | โ |
MobileNetV2SE68 | 11M | face::align | demo | โ | โ | โ | โ | โ | โ๏ธ | โ๏ธ | โ |
PFLD68 | 2.8M | face::align | demo | โ | โ | โ | โ | โ | โ๏ธ | โ๏ธ | โ |
FaceLandmark1000 | 2.0M | face::align | demo | โ | โ | โ | โ | โ | โ๏ธ | โ๏ธ | โ |
PIPNet98 | 44.0M | face::align | demo | โ | โ | โ | โ | โ | โ๏ธ | โ๏ธ | โ |
PIPNet68 | 44.0M | face::align | demo | โ | โ | โ | โ | โ | โ๏ธ | โ๏ธ | โ |
PIPNet29 | 44.0M | face::align | demo | โ | โ | โ | โ | โ | โ๏ธ | โ๏ธ | โ |
PIPNet19 | 44.0M | face::align | demo | โ | โ | โ | โ | โ | โ๏ธ | โ๏ธ | โ |
FSANet | 1.2M | face::pose | demo | โ | โ | / | โ | โ | โ๏ธ | โ๏ธ | โ |
AgeGoogleNet | 23M | face::attr | demo | โ | โ | โ | โ | โ | โ๏ธ | โ๏ธ | โ |
GenderGoogleNet | 23M | face::attr | demo | โ | โ | โ | โ | โ | โ๏ธ | โ๏ธ | โ |
EmotionFerPlus | 33M | face::attr | demo | โ | โ | โ | โ | โ | โ๏ธ | โ๏ธ | โ |
VGG16Age | 514M | face::attr | demo | โ | โ | โ | โ | โ | โ๏ธ | โ๏ธ | / |
VGG16Gender | 512M | face::attr | demo | โ | โ | โ | โ | โ | โ๏ธ | โ๏ธ | / |
SSRNet | 190K | face::attr | demo | โ | โ | / | โ | โ | โ๏ธ | โ๏ธ | โ |
EfficientEmotion7 | 15M | face::attr | demo | โ | โ | โ | โ | โ | โ๏ธ | โ๏ธ | โ |
EfficientEmotion8 | 15M | face::attr | demo | โ | โ | โ | โ | โ | โ๏ธ | โ๏ธ | โ |
MobileEmotion7 | 13M | face::attr | demo | โ | โ | โ | โ | โ | โ๏ธ | โ๏ธ | โ |
ReXNetEmotion7 | 30M | face::attr | demo | โ | โ | / | โ | โ | โ๏ธ | โ๏ธ | / |
EfficientNetLite4 | 49M | classification | demo | โ | โ | / | โ | โ | โ๏ธ | โ๏ธ | / |
ShuffleNetV2 | 8.7M | classification | demo | โ | โ | โ | โ | โ | โ๏ธ | โ๏ธ | โ |
DenseNet121 | 30.7M | classification | demo | โ | โ | โ | โ | โ | โ๏ธ | โ๏ธ | / |
GhostNet | 20M | classification | demo | โ | โ | โ | โ | โ | โ๏ธ | โ๏ธ | โ |
HdrDNet | 13M | classification | demo | โ | โ | โ | โ | โ | โ๏ธ | โ๏ธ | โ |
IBNNet | 97M | classification | demo | โ | โ | โ | โ | โ | โ๏ธ | โ๏ธ | / |
MobileNetV2 | 13M | classification | demo | โ | โ | โ | โ | โ | โ๏ธ | โ๏ธ | โ |
ResNet | 44M | classification | demo | โ | โ | โ | โ | โ | โ๏ธ | โ๏ธ | / |
ResNeXt | 95M | classification | demo | โ | โ | โ | โ | โ | โ๏ธ | โ๏ธ | / |
DeepLabV3ResNet101 | 232M | segmentation | demo | โ | โ | โ | โ | โ | โ๏ธ | โ๏ธ | / |
FCNResNet101 | 207M | segmentation | demo | โ | โ | โ | โ | โ | โ๏ธ | โ๏ธ | / |
FastStyleTransfer | 6.4M | style | demo | โ | โ | โ | โ | โ | โ๏ธ | โ๏ธ | โ |
Colorizer | 123M | colorization | demo | โ | โ | / | โ | โ | โ๏ธ | โ๏ธ | / |
SubPixelCNN | 234K | resolution | demo | โ | โ | / | โ | โ | โ๏ธ | โ๏ธ | โ |
SubPixelCNN | 234K | resolution | demo | โ | โ | / | โ | โ | โ๏ธ | โ๏ธ | โ |
InsectDet | 27M | detection | demo | โ | โ | / | โ | โ | โ๏ธ | โ๏ธ | โ |
InsectID | 22M | classification | demo | โ | โ | โ | โ | โ | โ๏ธ | โ๏ธ | โ๏ธ |
PlantID | 30M | classification | demo | โ | โ | โ | โ | โ | โ๏ธ | โ๏ธ | โ๏ธ |
YOLOv5BlazeFace | 3.4M | face::detect | demo | โ | โ | / | / | โ | โ๏ธ | โ๏ธ | โ |
YoloV5_V_6_1 | 7.5M | detection | demo | โ | โ | / | / | โ | โ๏ธ | โ๏ธ | โ |
HeadSeg | 31M | segmentation | demo | โ | โ | / | โ | โ | โ๏ธ | โ๏ธ | โ |
FemalePhoto2Cartoon | 15M | style | demo | โ | โ | / | โ | โ | โ๏ธ | โ๏ธ | โ |
FastPortraitSeg | 400k | segmentation | demo | โ | โ | / | / | โ | โ๏ธ | โ๏ธ | โ |
PortraitSegSINet | 380k | segmentation | demo | โ | โ | / | / | โ | โ๏ธ | โ๏ธ | โ |
PortraitSegExtremeC3Net | 180k | segmentation | demo | โ | โ | / | / | โ | โ๏ธ | โ๏ธ | โ |
FaceHairSeg | 18M | segmentation | demo | โ | โ | / | / | โ | โ๏ธ | โ๏ธ | โ |
HairSeg | 18M | segmentation | demo | โ | โ | / | / | โ | โ๏ธ | โ๏ธ | โ |
MobileHumanMatting | 3M | matting | demo | โ | โ | / | / | โ | โ๏ธ | โ๏ธ | โ |
MobileHairSeg | 14M | segmentation | demo | โ | โ | / | / | โ | โ๏ธ | โ๏ธ | โ |
YOLOv6 | 17M | detection | demo | โ | โ | โ | โ | โ | โ๏ธ | โ๏ธ | โ |
FaceParsingBiSeNet | 50M | segmentation | demo | โ | โ | โ | โ | โ | โ๏ธ | โ๏ธ | โ |
FaceParsingBiSeNetDyn | 50M | segmentation | demo | โ | / | / | / | / | โ๏ธ | โ๏ธ | โ |
๐๏ธ Model Zoo๏ผClick here!
Lite.Ai.ToolKit contains almost 100+ AI models with 500+ frozen pretrained files now. Most of the files are converted by myself. You can use it through lite::cv::Type::Class syntax, such as lite::cv::detection::YoloV5. More details can be found at Examples for Lite.Ai.ToolKit. Note, for Google Drive, I can not upload all the *.onnx files because of the storage limitation (15G).
File | Baidu Drive | Google Drive | Docker Hub | Hub (Docs) |
---|---|---|---|---|
ONNX | Baidu Drive code: 8gin | Google Drive | ONNX Docker v0.1.22.01.08 (28G), v0.1.22.02.02 (400M) | ONNX Hub |
MNN | Baidu Drive code: 9v63 | โ | MNN Docker v0.1.22.01.08 (11G), v0.1.22.02.02 (213M) | MNN Hub |
NCNN | Baidu Drive code: sc7f | โ | NCNN Docker v0.1.22.01.08 (9G), v0.1.22.02.02 (197M) | NCNN Hub |
TNN | Baidu Drive code: 6o6k | โ | TNN Docker v0.1.22.01.08 (11G), v0.1.22.02.02 (217M) | TNN Hub |
docker pull qyjdefdocker/lite.ai.toolkit-onnx-hub:v0.1.22.01.08 # (28G)
docker pull qyjdefdocker/lite.ai.toolkit-mnn-hub:v0.1.22.01.08 # (11G)
docker pull qyjdefdocker/lite.ai.toolkit-ncnn-hub:v0.1.22.01.08 # (9G)
docker pull qyjdefdocker/lite.ai.toolkit-tnn-hub:v0.1.22.01.08 # (11G)
docker pull qyjdefdocker/lite.ai.toolkit-onnx-hub:v0.1.22.02.02 # (400M) + YOLO5Face
docker pull qyjdefdocker/lite.ai.toolkit-mnn-hub:v0.1.22.02.02 # (213M) + YOLO5Face
docker pull qyjdefdocker/lite.ai.toolkit-ncnn-hub:v0.1.22.02.02 # (197M) + YOLO5Face
docker pull qyjdefdocker/lite.ai.toolkit-tnn-hub:v0.1.22.02.02 # (217M) + YOLO5Face
- Firstly, pull the image from docker hub.
docker pull qyjdefdocker/lite.ai.toolkit-mnn-hub:v0.1.22.01.08 # (11G) docker pull qyjdefdocker/lite.ai.toolkit-ncnn-hub:v0.1.22.01.08 # (9G) docker pull qyjdefdocker/lite.ai.toolkit-tnn-hub:v0.1.22.01.08 # (11G) docker pull qyjdefdocker/lite.ai.toolkit-onnx-hub:v0.1.22.01.08 # (28G)
- Secondly, run the container with local
share
dir usingdocker run -idt xxx
. A minimum example will show you as follows.- make a
share
dir in your local device.
mkdir share # any name is ok.
- write
run_mnn_docker_hub.sh
script like:
#!/bin/bash PORT1=6072 PORT2=6084 SERVICE_DIR=/Users/xxx/Desktop/your-path-to/share CONRAINER_DIR=/home/hub/share CONRAINER_NAME=mnn_docker_hub_d docker run -idt -p ${PORT2}:${PORT1} -v ${SERVICE_DIR}:${CONRAINER_DIR} --shm-size=16gb --name ${CONRAINER_NAME} qyjdefdocker/lite.ai.toolkit-mnn-hub:v0.1.22.01.08
- make a
- Finally, copy the model weights from
/home/hub/mnn/cv
to your localshare
dir.# activate mnn docker. sh ./run_mnn_docker_hub.sh docker exec -it mnn_docker_hub_d /bin/bash # copy the models to the share dir. cd /home/hub cp -rf mnn/cv share/
The pretrained and converted ONNX files provide by lite.ai.toolkit are listed as follows. Also, see Model Zoo and ONNX Hub, MNN Hub, TNN Hub, NCNN Hub for more details.
๐๏ธ More Examples๏ผClick here!
More examples can be found at examples.
#include "lite/lite.h"
static void test_default()
{
std::string onnx_path = "../../../examples/hub/onnx/cv/yolov5s.onnx";
std::string test_img_path = "../../../examples/lite/resources/test_lite_yolov5_1.jpg";
std::string save_img_path = "../../../examples/logs/test_lite_yolov5_1.jpg";
auto *yolov5 = new lite::cv::detection::YoloV5(onnx_path);
std::vector<lite::types::Boxf> detected_boxes;
cv::Mat img_bgr = cv::imread(test_img_path);
yolov5->detect(img_bgr, detected_boxes);
lite::utils::draw_boxes_inplace(img_bgr, detected_boxes);
cv::imwrite(save_img_path, img_bgr);
delete yolov5;
}
The output is:
Or you can use Newest ๐ฅ๐ฅ ! YOLO series's detector YOLOX or YoloR. They got the similar results.
More classes for general object detection (80 classes, COCO).
auto *detector = new lite::cv::detection::YoloX(onnx_path); // Newest YOLO detector !!! 2021-07
auto *detector = new lite::cv::detection::YoloV4(onnx_path);
auto *detector = new lite::cv::detection::YoloV3(onnx_path);
auto *detector = new lite::cv::detection::TinyYoloV3(onnx_path);
auto *detector = new lite::cv::detection::SSD(onnx_path);
auto *detector = new lite::cv::detection::YoloV5(onnx_path);
auto *detector = new lite::cv::detection::YoloR(onnx_path); // Newest YOLO detector !!! 2021-05
auto *detector = new lite::cv::detection::TinyYoloV4VOC(onnx_path);
auto *detector = new lite::cv::detection::TinyYoloV4COCO(onnx_path);
auto *detector = new lite::cv::detection::ScaledYoloV4(onnx_path);
auto *detector = new lite::cv::detection::EfficientDet(onnx_path);
auto *detector = new lite::cv::detection::EfficientDetD7(onnx_path);
auto *detector = new lite::cv::detection::EfficientDetD8(onnx_path);
auto *detector = new lite::cv::detection::YOLOP(onnx_path);
auto *detector = new lite::cv::detection::NanoDet(onnx_path); // Super fast and tiny!
auto *detector = new lite::cv::detection::NanoDetPlus(onnx_path); // Super fast and tiny! 2021/12/25
auto *detector = new lite::cv::detection::NanoDetEfficientNetLite(onnx_path); // Super fast and tiny!
auto *detector = new lite::cv::detection::YoloV5_V_6_0(onnx_path);
auto *detector = new lite::cv::detection::YoloV5_V_6_1(onnx_path);
auto *detector = new lite::cv::detection::YoloX_V_0_1_1(onnx_path); // Newest YOLO detector !!! 2021-07
auto *detector = new lite::cv::detection::YOLOv6(onnx_path); // Newest 2022 YOLO detector !!!
Example1: Video Matting using RobustVideoMatting2021๐ฅ๐ฅ๐ฅ. Download model from Model-Zoo2.
#include "lite/lite.h"
static void test_default()
{
std::string onnx_path = "../../../examples/hub/onnx/cv/rvm_mobilenetv3_fp32.onnx";
std::string video_path = "../../../examples/lite/resources/test_lite_rvm_0.mp4";
std::string output_path = "../../../examples/logs/test_lite_rvm_0.mp4";
std::string background_path = "../../../examples/lite/resources/test_lite_matting_bgr.jpg";
auto *rvm = new lite::cv::matting::RobustVideoMatting(onnx_path, 16); // 16 threads
std::vector<lite::types::MattingContent> contents;
// 1. video matting.
cv::Mat background = cv::imread(background_path);
rvm->detect_video(video_path, output_path, contents, false, 0.4f,
20, true, true, background);
delete rvm;
}
The output is:
More classes for matting (image matting, video matting, trimap/mask-free, trimap/mask-based)
auto *matting = new lite::cv::matting::RobustVideoMatting:(onnx_path); // WACV 2022.
auto *matting = new lite::cv::matting::MGMatting(onnx_path); // CVPR 2021
auto *matting = new lite::cv::matting::MODNet(onnx_path); // AAAI 2022
auto *matting = new lite::cv::matting::MODNetDyn(onnx_path); // AAAI 2022 Dynamic Shape Inference.
auto *matting = new lite::cv::matting::BackgroundMattingV2(onnx_path); // CVPR 2020
auto *matting = new lite::cv::matting::BackgroundMattingV2Dyn(onnx_path); // CVPR 2020 Dynamic Shape Inference.
auto *matting = new lite::cv::matting::MobileHumanMatting(onnx_path); // 3Mb only !!!
Example2: 1000 Facial Landmarks Detection using FaceLandmarks1000. Download model from Model-Zoo2.
#include "lite/lite.h"
static void test_default()
{
std::string onnx_path = "../../../examples/hub/onnx/cv/FaceLandmark1000.onnx";
std::string test_img_path = "../../../examples/lite/resources/test_lite_face_landmarks_0.png";
std::string save_img_path = "../../../examples/logs/test_lite_face_landmarks_1000.jpg";
auto *face_landmarks_1000 = new lite::cv::face::align::FaceLandmark1000(onnx_path);
lite::types::Landmarks landmarks;
cv::Mat img_bgr = cv::imread(test_img_path);
face_landmarks_1000->detect(img_bgr, landmarks);
lite::utils::draw_landmarks_inplace(img_bgr, landmarks);
cv::imwrite(save_img_path, img_bgr);
delete face_landmarks_1000;
}
The output is:
More classes for face alignment (68 points, 98 points, 106 points, 1000 points)
auto *align = new lite::cv::face::align::PFLD(onnx_path); // 106 landmarks, 1.0Mb only!
auto *align = new lite::cv::face::align::PFLD98(onnx_path); // 98 landmarks, 4.8Mb only!
auto *align = new lite::cv::face::align::PFLD68(onnx_path); // 68 landmarks, 2.8Mb only!
auto *align = new lite::cv::face::align::MobileNetV268(onnx_path); // 68 landmarks, 9.4Mb only!
auto *align = new lite::cv::face::align::MobileNetV2SE68(onnx_path); // 68 landmarks, 11Mb only!
auto *align = new lite::cv::face::align::FaceLandmark1000(onnx_path); // 1000 landmarks, 2.0Mb only!
auto *align = new lite::cv::face::align::PIPNet98(onnx_path); // 98 landmarks, CVPR2021!
auto *align = new lite::cv::face::align::PIPNet68(onnx_path); // 68 landmarks, CVPR2021!
auto *align = new lite::cv::face::align::PIPNet29(onnx_path); // 29 landmarks, CVPR2021!
auto *align = new lite::cv::face::align::PIPNet19(onnx_path); // 19 landmarks, CVPR2021!
Example3: Colorization using colorization. Download model from Model-Zoo2.
#include "lite/lite.h"
static void test_default()
{
std::string onnx_path = "../../../examples/hub/onnx/cv/eccv16-colorizer.onnx";
std::string test_img_path = "../../../examples/lite/resources/test_lite_colorizer_1.jpg";
std::string save_img_path = "../../../examples/logs/test_lite_eccv16_colorizer_1.jpg";
auto *colorizer = new lite::cv::colorization::Colorizer(onnx_path);
cv::Mat img_bgr = cv::imread(test_img_path);
lite::types::ColorizeContent colorize_content;
colorizer->detect(img_bgr, colorize_content);
if (colorize_content.flag) cv::imwrite(save_img_path, colorize_content.mat);
delete colorizer;
}
The output is:
More classes for colorization (gray to rgb)
auto *colorizer = new lite::cv::colorization::Colorizer(onnx_path);
#include "lite/lite.h"
static void test_default()
{
std::string onnx_path = "../../../examples/hub/onnx/cv/ms1mv3_arcface_r100.onnx";
std::string test_img_path0 = "../../../examples/lite/resources/test_lite_faceid_0.png";
std::string test_img_path1 = "../../../examples/lite/resources/test_lite_faceid_1.png";
std::string test_img_path2 = "../../../examples/lite/resources/test_lite_faceid_2.png";
auto *glint_arcface = new lite::cv::faceid::GlintArcFace(onnx_path);
lite::types::FaceContent face_content0, face_content1, face_content2;
cv::Mat img_bgr0 = cv::imread(test_img_path0);
cv::Mat img_bgr1 = cv::imread(test_img_path1);
cv::Mat img_bgr2 = cv::imread(test_img_path2);
glint_arcface->detect(img_bgr0, face_content0);
glint_arcface->detect(img_bgr1, face_content1);
glint_arcface->detect(img_bgr2, face_content2);
if (face_content0.flag && face_content1.flag && face_content2.flag)
{
float sim01 = lite::utils::math::cosine_similarity<float>(
face_content0.embedding, face_content1.embedding);
float sim02 = lite::utils::math::cosine_similarity<float>(
face_content0.embedding, face_content2.embedding);
std::cout << "Detected Sim01: " << sim << " Sim02: " << sim02 << std::endl;
}
delete glint_arcface;
}
The output is:
Detected Sim01: 0.721159 Sim02: -0.0626267
More classes for face recognition (face id vector extract)
auto *recognition = new lite::cv::faceid::GlintCosFace(onnx_path); // DeepGlint(insightface)
auto *recognition = new lite::cv::faceid::GlintArcFace(onnx_path); // DeepGlint(insightface)
auto *recognition = new lite::cv::faceid::GlintPartialFC(onnx_path); // DeepGlint(insightface)
auto *recognition = new lite::cv::faceid::FaceNet(onnx_path);
auto *recognition = new lite::cv::faceid::FocalArcFace(onnx_path);
auto *recognition = new lite::cv::faceid::FocalAsiaArcFace(onnx_path);
auto *recognition = new lite::cv::faceid::TencentCurricularFace(onnx_path); // Tencent(TFace)
auto *recognition = new lite::cv::faceid::TencentCifpFace(onnx_path); // Tencent(TFace)
auto *recognition = new lite::cv::faceid::CenterLossFace(onnx_path);
auto *recognition = new lite::cv::faceid::SphereFace(onnx_path);
auto *recognition = new lite::cv::faceid::PoseRobustFace(onnx_path);
auto *recognition = new lite::cv::faceid::NaivePoseRobustFace(onnx_path);
auto *recognition = new lite::cv::faceid::MobileFaceNet(onnx_path); // 3.8Mb only !
auto *recognition = new lite::cv::faceid::CavaGhostArcFace(onnx_path);
auto *recognition = new lite::cv::faceid::CavaCombinedFace(onnx_path);
auto *recognition = new lite::cv::faceid::MobileSEFocalFace(onnx_path); // 4.5Mb only !
Example5: Face Detection using SCRFD 2021. Download model from Model-Zoo2.
#include "lite/lite.h"
static void test_default()
{
std::string onnx_path = "../../../examples/hub/onnx/cv/scrfd_2.5g_bnkps_shape640x640.onnx";
std::string test_img_path = "../../../examples/lite/resources/test_lite_face_detector.jpg";
std::string save_img_path = "../../../examples/logs/test_lite_scrfd.jpg";
auto *scrfd = new lite::cv::face::detect::SCRFD(onnx_path);
std::vector<lite::types::BoxfWithLandmarks> detected_boxes;
cv::Mat img_bgr = cv::imread(test_img_path);
scrfd->detect(img_bgr, detected_boxes);
lite::utils::draw_boxes_with_landmarks_inplace(img_bgr, detected_boxes);
cv::imwrite(save_img_path, img_bgr);
delete scrfd;
}
The output is:
More classes for face detection (super fast face detection)
auto *detector = new lite::face::detect::UltraFace(onnx_path); // 1.1Mb only !
auto *detector = new lite::face::detect::FaceBoxes(onnx_path); // 3.8Mb only !
auto *detector = new lite::face::detect::FaceBoxesv2(onnx_path); // 4.0Mb only !
auto *detector = new lite::face::detect::RetinaFace(onnx_path); // 1.6Mb only ! CVPR2020
auto *detector = new lite::face::detect::SCRFD(onnx_path); // 2.5Mb only ! CVPR2021, Super fast and accurate!!
auto *detector = new lite::face::detect::YOLO5Face(onnx_path); // 2021, Super fast and accurate!!
auto *detector = new lite::face::detect::YOLOv5BlazeFace(onnx_path); // 2021, Super fast and accurate!!
Example6: Object Segmentation using DeepLabV3ResNet101. Download model from Model-Zoo2.
#include "lite/lite.h"
static void test_default()
{
std::string onnx_path = "../../../examples/hub/onnx/cv/deeplabv3_resnet101_coco.onnx";
std::string test_img_path = "../../../examples/lite/resources/test_lite_deeplabv3_resnet101.png";
std::string save_img_path = "../../../examples/logs/test_lite_deeplabv3_resnet101.jpg";
auto *deeplabv3_resnet101 = new lite::cv::segmentation::DeepLabV3ResNet101(onnx_path, 16); // 16 threads
lite::types::SegmentContent content;
cv::Mat img_bgr = cv::imread(test_img_path);
deeplabv3_resnet101->detect(img_bgr, content);
if (content.flag)
{
cv::Mat out_img;
cv::addWeighted(img_bgr, 0.2, content.color_mat, 0.8, 0., out_img);
cv::imwrite(save_img_path, out_img);
if (!content.names_map.empty())
{
for (auto it = content.names_map.begin(); it != content.names_map.end(); ++it)
{
std::cout << it->first << " Name: " << it->second << std::endl;
}
}
}
delete deeplabv3_resnet101;
}
The output is:
More classes for object segmentation (general objects segmentation)
auto *segment = new lite::cv::segmentation::FCNResNet101(onnx_path);
auto *segment = new lite::cv::segmentation::DeepLabV3ResNet101(onnx_path);
#include "lite/lite.h"
static void test_default()
{
std::string onnx_path = "../../../examples/hub/onnx/cv/ssrnet.onnx";
std::string test_img_path = "../../../examples/lite/resources/test_lite_ssrnet.jpg";
std::string save_img_path = "../../../examples/logs/test_lite_ssrnet.jpg";
auto *ssrnet = new lite::cv::face::attr::SSRNet(onnx_path);
lite::types::Age age;
cv::Mat img_bgr = cv::imread(test_img_path);
ssrnet->detect(img_bgr, age);
lite::utils::draw_age_inplace(img_bgr, age);
cv::imwrite(save_img_path, img_bgr);
delete ssrnet;
}
The output is:
More classes for face attributes analysis (age, gender, emotion)
auto *attribute = new lite::cv::face::attr::AgeGoogleNet(onnx_path);
auto *attribute = new lite::cv::face::attr::GenderGoogleNet(onnx_path);
auto *attribute = new lite::cv::face::attr::EmotionFerPlus(onnx_path);
auto *attribute = new lite::cv::face::attr::VGG16Age(onnx_path);
auto *attribute = new lite::cv::face::attr::VGG16Gender(onnx_path);
auto *attribute = new lite::cv::face::attr::EfficientEmotion7(onnx_path); // 7 emotions, 15Mb only!
auto *attribute = new lite::cv::face::attr::EfficientEmotion8(onnx_path); // 8 emotions, 15Mb only!
auto *attribute = new lite::cv::face::attr::MobileEmotion7(onnx_path); // 7 emotions, 13Mb only!
auto *attribute = new lite::cv::face::attr::ReXNetEmotion7(onnx_path); // 7 emotions
auto *attribute = new lite::cv::face::attr::SSRNet(onnx_path); // age estimation, 190kb only!!!
#include "lite/lite.h"
static void test_default()
{
std::string onnx_path = "../../../examples/hub/onnx/cv/densenet121.onnx";
std::string test_img_path = "../../../examples/lite/resources/test_lite_densenet.jpg";
auto *densenet = new lite::cv::classification::DenseNet(onnx_path);
lite::types::ImageNetContent content;
cv::Mat img_bgr = cv::imread(test_img_path);
densenet->detect(img_bgr, content);
if (content.flag)
{
const unsigned int top_k = content.scores.size();
if (top_k > 0)
{
for (unsigned int i = 0; i < top_k; ++i)
std::cout << i + 1
<< ": " << content.labels.at(i)
<< ": " << content.texts.at(i)
<< ": " << content.scores.at(i)
<< std::endl;
}
}
delete densenet;
}
The output is:
More classes for image classification (1000 classes)
auto *classifier = new lite::cv::classification::EfficientNetLite4(onnx_path);
auto *classifier = new lite::cv::classification::ShuffleNetV2(onnx_path); // 8.7Mb only!
auto *classifier = new lite::cv::classification::GhostNet(onnx_path);
auto *classifier = new lite::cv::classification::HdrDNet(onnx_path);
auto *classifier = new lite::cv::classification::IBNNet(onnx_path);
auto *classifier = new lite::cv::classification::MobileNetV2(onnx_path); // 13Mb only!
auto *classifier = new lite::cv::classification::ResNet(onnx_path);
auto *classifier = new lite::cv::classification::ResNeXt(onnx_path);
#include "lite/lite.h"
static void test_default()
{
std::string onnx_path = "../../../examples/hub/onnx/cv/fsanet-var.onnx";
std::string test_img_path = "../../../examples/lite/resources/test_lite_fsanet.jpg";
std::string save_img_path = "../../../examples/logs/test_lite_fsanet.jpg";
auto *fsanet = new lite::cv::face::pose::FSANet(onnx_path);
cv::Mat img_bgr = cv::imread(test_img_path);
lite::types::EulerAngles euler_angles;
fsanet->detect(img_bgr, euler_angles);
if (euler_angles.flag)
{
lite::utils::draw_axis_inplace(img_bgr, euler_angles);
cv::imwrite(save_img_path, img_bgr);
std::cout << "yaw:" << euler_angles.yaw << " pitch:" << euler_angles.pitch << " row:" << euler_angles.roll << std::endl;
}
delete fsanet;
}
The output is:
More classes for head pose estimation (euler angle, yaw, pitch, roll)
auto *pose = new lite::cv::face::pose::FSANet(onnx_path); // 1.2Mb only!
Example10: Style Transfer using FastStyleTransfer. Download model from Model-Zoo2.
#include "lite/lite.h"
static void test_default()
{
std::string onnx_path = "../../../examples/hub/onnx/cv/style-candy-8.onnx";
std::string test_img_path = "../../../examples/lite/resources/test_lite_fast_style_transfer.jpg";
std::string save_img_path = "../../../examples/logs/test_lite_fast_style_transfer_candy.jpg";
auto *fast_style_transfer = new lite::cv::style::FastStyleTransfer(onnx_path);
lite::types::StyleContent style_content;
cv::Mat img_bgr = cv::imread(test_img_path);
fast_style_transfer->detect(img_bgr, style_content);
if (style_content.flag) cv::imwrite(save_img_path, style_content.mat);
delete fast_style_transfer;
}
The output is:
More classes for style transfer (neural style transfer, others)
auto *transfer = new lite::cv::style::FastStyleTransfer(onnx_path); // 6.4Mb only
#include "lite/lite.h"
static void test_default()
{
std::string onnx_path = "../../../examples/hub/onnx/cv/minivision_head_seg.onnx";
std::string test_img_path = "../../../examples/lite/resources/test_lite_head_seg.png";
std::string save_img_path = "../../../examples/logs/test_lite_head_seg.jpg";
auto *head_seg = new lite::cv::segmentation::HeadSeg(onnx_path, 4); // 4 threads
lite::types::HeadSegContent content;
cv::Mat img_bgr = cv::imread(test_img_path);
head_seg->detect(img_bgr, content);
if (content.flag) cv::imwrite(save_img_path, content.mask * 255.f);
delete head_seg;
}
The output is:
More classes for human segmentation (head, portrait, hair, others)
auto *segment = new lite::cv::segmentation::HeadSeg(onnx_path); // 31Mb
auto *segment = new lite::cv::segmentation::FastPortraitSeg(onnx_path); // <= 400Kb !!!
auto *segment = new lite::cv::segmentation::PortraitSegSINet(onnx_path); // <= 380Kb !!!
auto *segment = new lite::cv::segmentation::PortraitSegExtremeC3Net(onnx_path); // <= 180Kb !!! Extreme Tiny !!!
auto *segment = new lite::cv::segmentation::FaceHairSeg(onnx_path); // 18M
auto *segment = new lite::cv::segmentation::HairSeg(onnx_path); // 18M
auto *segment = new lite::cv::segmentation::MobileHairSeg(onnx_path); // 14M
Example12: Photo transfer to Cartoon Photo2Cartoon. Download model from Model-Zoo2.
#include "lite/lite.h"
static void test_default()
{
std::string head_seg_onnx_path = "../../../examples/hub/onnx/cv/minivision_head_seg.onnx";
std::string cartoon_onnx_path = "../../../examples/hub/onnx/cv/minivision_female_photo2cartoon.onnx";
std::string test_img_path = "../../../examples/lite/resources/test_lite_female_photo2cartoon.jpg";
std::string save_mask_path = "../../../examples/logs/test_lite_female_photo2cartoon_seg.jpg";
std::string save_cartoon_path = "../../../examples/logs/test_lite_female_photo2cartoon_cartoon.jpg";
auto *head_seg = new lite::cv::segmentation::HeadSeg(head_seg_onnx_path, 4); // 4 threads
auto *female_photo2cartoon = new lite::cv::style::FemalePhoto2Cartoon(cartoon_onnx_path, 4); // 4 threads
lite::types::HeadSegContent head_seg_content;
cv::Mat img_bgr = cv::imread(test_img_path);
head_seg->detect(img_bgr, head_seg_content);
if (head_seg_content.flag && !head_seg_content.mask.empty())
{
cv::imwrite(save_mask_path, head_seg_content.mask * 255.f);
// Female Photo2Cartoon Style Transfer
lite::types::FemalePhoto2CartoonContent female_cartoon_content;
female_photo2cartoon->detect(img_bgr, head_seg_content.mask, female_cartoon_content);
if (female_cartoon_content.flag && !female_cartoon_content.cartoon.empty())
cv::imwrite(save_cartoon_path, female_cartoon_content.cartoon);
}
delete head_seg;
delete female_photo2cartoon;
}
The output is:
More classes for photo style transfer.
auto *transfer = new lite::cv::style::FemalePhoto2Cartoon(onnx_path);
Example13: Face Parsing using FaceParsing. Download model from Model-Zoo2.
#include "lite/lite.h"
static void test_default()
{
std::string onnx_path = "../../../examples/hub/onnx/cv/face_parsing_512x512.onnx";
std::string test_img_path = "../../../examples/lite/resources/test_lite_face_parsing.png";
std::string save_img_path = "../../../examples/logs/test_lite_face_parsing_bisenet.jpg";
auto *face_parsing_bisenet = new lite::cv::segmentation::FaceParsingBiSeNet(onnx_path, 8); // 8 threads
lite::types::FaceParsingContent content;
cv::Mat img_bgr = cv::imread(test_img_path);
face_parsing_bisenet->detect(img_bgr, content);
if (content.flag && !content.merge.empty())
cv::imwrite(save_img_path, content.merge);
delete face_parsing_bisenet;
}
The output is:
More classes for face parsing (hair, eyes, nose, mouth, others)
auto *segment = new lite::cv::segmentation::FaceParsingBiSeNet(onnx_path); // 50Mb
auto *segment = new lite::cv::segmentation::FaceParsingBiSeNetDyn(onnx_path); // Dynamic Shape Inference.
GNU General Public License v3.0
Please consider โญ this repo if you like it, as it is the simplest way to support me.