Skip to content

Commit

Permalink
[TensorRT] Upgrade TF-TRT version to TF2's implementation.
Browse files Browse the repository at this point in the history
Signed-off-by: 泊霆 <[email protected]>
  • Loading branch information
Mesilenceki committed Jan 22, 2024
1 parent 5eabe5f commit 0eaa93e
Show file tree
Hide file tree
Showing 100 changed files with 26,474 additions and 8,636 deletions.
662 changes: 559 additions & 103 deletions tensorflow/compiler/tf2tensorrt/BUILD

Large diffs are not rendered by default.

19 changes: 19 additions & 0 deletions tensorflow/compiler/tf2tensorrt/_pywrap_py_utils.pyi
Original file line number Diff line number Diff line change
@@ -0,0 +1,19 @@
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

def get_linked_tensorrt_version() -> tuple[int,int,int]: ...
def get_loaded_tensorrt_version() -> tuple[int,int,int]: ...
def get_registered_op_converters() -> list[str]: ...
def is_tensorrt_enabled() -> bool: ...
38 changes: 38 additions & 0 deletions tensorflow/compiler/tf2tensorrt/common/datavec.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,38 @@
/* Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#ifndef TENSORFLOW_COMPILER_TF2TENSORRT_COMMON_DATAVEC_H_
#define TENSORFLOW_COMPILER_TF2TENSORRT_COMMON_DATAVEC_H_

#include <vector>

#include "tensorflow/core/framework/tensor.h"
#include "tensorflow/core/platform/types.h"

namespace tensorflow {
namespace tensorrt {

// Input/output data format for OpConverterTest::BuildAndRun().
struct InputOutputData {
size_t TotalBytes() const { return tensor.TotalBytes(); }
string name;
Tensor tensor;
};

using DataVec = std::vector<InputOutputData>;

} // namespace tensorrt
} // namespace tensorflow
#endif
242 changes: 242 additions & 0 deletions tensorflow/compiler/tf2tensorrt/common/utils.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,242 @@
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#include "tensorflow/compiler/tf2tensorrt/common/utils.h"

#include <tuple>

#if GOOGLE_CUDA && GOOGLE_TENSORRT
#include "absl/base/call_once.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/str_join.h"
#include "tensorflow/core/lib/core/errors.h"
#include "tensorflow/core/profiler/lib/traceme.h"
#include "third_party/tensorrt/NvInferPlugin.h"

#endif

namespace tensorflow {
namespace tensorrt {

std::tuple<int, int, int> GetLinkedTensorRTVersion() {
#if GOOGLE_CUDA && GOOGLE_TENSORRT
return std::tuple<int, int, int>{NV_TENSORRT_MAJOR, NV_TENSORRT_MINOR,
NV_TENSORRT_PATCH};
#else
return std::tuple<int, int, int>{0, 0, 0};
#endif
}

std::tuple<int, int, int> GetLoadedTensorRTVersion() {
#if GOOGLE_CUDA && GOOGLE_TENSORRT
int ver = getInferLibVersion();
int major = ver / 1000;
ver = ver - major * 1000;
int minor = ver / 100;
int patch = ver - minor * 100;
return std::tuple<int, int, int>{major, minor, patch};
#else
return std::tuple<int, int, int>{0, 0, 0};
#endif
}

} // namespace tensorrt
} // namespace tensorflow

#if GOOGLE_CUDA && GOOGLE_TENSORRT
namespace tensorflow {
namespace tensorrt {

Status GetTrtBindingIndex(const char* tensor_name, int profile_index,
const nvinfer1::ICudaEngine* cuda_engine,
int* binding_index) {
tensorflow::profiler::TraceMe activity(
"GetTrtBindingIndex", tensorflow::profiler::TraceMeLevel::kInfo);
// If the engine has been built for K profiles, the first getNbBindings() / K
// bindings are used by profile number 0, the following getNbBindings() / K
// bindings are used by profile number 1 etc.
//
// GetBindingIndex(tensor_name) returns the binding index for the progile 0.
// We can also consider it as a "binding_index_within_profile".
*binding_index = cuda_engine->getBindingIndex(tensor_name);
if (*binding_index == -1) {
const string msg = absl::StrCat("Input node ", tensor_name, " not found");
return errors::NotFound(msg);
}
int n_profiles = cuda_engine->getNbOptimizationProfiles();
// If we have more then one optimization profile, then we need to shift the
// binding index according to the following formula:
// binding_index_within_engine = binding_index_within_profile +
// profile_index * bindings_per_profile
const int bindings_per_profile = cuda_engine->getNbBindings() / n_profiles;
*binding_index = *binding_index + profile_index * bindings_per_profile;
return Status::OK();
}

Status GetTrtBindingIndex(int network_input_index, int profile_index,
const nvinfer1::ICudaEngine* cuda_engine,
int* binding_index) {
const string input_name =
absl::StrCat(IONamePrefixes::kInputPHName, network_input_index);
return GetTrtBindingIndex(input_name.c_str(), profile_index, cuda_engine,
binding_index);
}

namespace {

void InitializeTrtPlugins(nvinfer1::ILogger* trt_logger) {
#if defined(PLATFORM_WINDOWS)
LOG_WARNING_WITH_PREFIX
<< "Windows support is provided experimentally. No guarantee is made "
"regarding functionality or engineering support. Use at your own "
"risk.";
#endif
LOG(INFO) << "Linked TensorRT version: "
<< absl::StrJoin(GetLinkedTensorRTVersion(), ".");
LOG(INFO) << "Loaded TensorRT version: "
<< absl::StrJoin(GetLoadedTensorRTVersion(), ".");

bool plugin_initialized = initLibNvInferPlugins(trt_logger, "");
if (!plugin_initialized) {
LOG(ERROR) << "Failed to initialize TensorRT plugins, and conversion may "
"fail later.";
}

int num_trt_plugins = 0;
nvinfer1::IPluginCreator* const* trt_plugin_creator_list =
getPluginRegistry()->getPluginCreatorList(&num_trt_plugins);
if (!trt_plugin_creator_list) {
LOG_WARNING_WITH_PREFIX << "Can not find any TensorRT plugins in registry.";
} else {
VLOG(1) << "Found the following " << num_trt_plugins
<< " TensorRT plugins in registry:";
for (int i = 0; i < num_trt_plugins; ++i) {
if (!trt_plugin_creator_list[i]) {
LOG_WARNING_WITH_PREFIX
<< "TensorRT plugin at index " << i
<< " is not accessible (null pointer returned by "
"getPluginCreatorList for this plugin)";
} else {
VLOG(1) << " " << trt_plugin_creator_list[i]->getPluginName();
}
}
}
}

} // namespace

void MaybeInitializeTrtPlugins(nvinfer1::ILogger* trt_logger) {
static absl::once_flag once;
absl::call_once(once, InitializeTrtPlugins, trt_logger);
}

} // namespace tensorrt
} // namespace tensorflow

namespace nvinfer1 {
std::ostream& operator<<(std::ostream& os,
const nvinfer1::TensorFormat& format) {
os << "nvinfer1::TensorFormat::";
switch (format) {
case nvinfer1::TensorFormat::kLINEAR:
os << "kLINEAR";
break;

case nvinfer1::TensorFormat::kCHW2:
os << "kCHW2";
break;

case nvinfer1::TensorFormat::kHWC8:
os << "kHWC8";
break;

case nvinfer1::TensorFormat::kCHW4:
os << "kCHW4";
break;

case nvinfer1::TensorFormat::kCHW16:
os << "kCHW16";
break;

case nvinfer1::TensorFormat::kCHW32:
os << "kCHW32";
break;

#if IS_TRT_VERSION_GE(8, 0, 0, 0)
case nvinfer1::TensorFormat::kDHWC8:
os << "kDHWC8";
break;

case nvinfer1::TensorFormat::kCDHW32:
os << "kCDHW32";
break;

case nvinfer1::TensorFormat::kHWC:
os << "kHWC";
break;

case nvinfer1::TensorFormat::kDLA_LINEAR:
os << "kDLA_LINEAR";
break;

case nvinfer1::TensorFormat::kDLA_HWC4:
os << "kDLA_HWC4";
break;

case nvinfer1::TensorFormat::kHWC16:
os << "kHWC16";
break;
#endif

default:
os << "unknown format";
}
return os;
}

std::ostream& operator<<(std::ostream& os, const nvinfer1::DataType& v) {
os << "nvinfer1::DataType::";
switch (v) {
case nvinfer1::DataType::kFLOAT:
os << "kFLOAT";
break;
case nvinfer1::DataType::kHALF:
os << "kHalf";
break;
#if IS_TRT_VERSION_GE(8, 6, 0, 0)
case nvinfer1::DataType::kFP8:
os << "kFP8";
break;
#endif
case nvinfer1::DataType::kINT8:
os << "kINT8";
break;
case nvinfer1::DataType::kINT32:
os << "kINT32";
break;
case nvinfer1::DataType::kBOOL:
os << "kBOOL";
break;
#if IS_TRT_VERSION_GE(8, 5, 0, 0)
case nvinfer1::DataType::kUINT8:
os << "kUINT8";
break;
#endif
}
return os;
}
} // namespace nvinfer1

#endif
Loading

0 comments on commit 0eaa93e

Please sign in to comment.