-
Notifications
You must be signed in to change notification settings - Fork 355
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[TensorRT] Upgrade TF-TRT version to TF2's implementation.
Signed-off-by: 泊霆 <[email protected]>
- Loading branch information
1 parent
5eabe5f
commit 0eaa93e
Showing
100 changed files
with
26,474 additions
and
8,636 deletions.
There are no files selected for viewing
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,19 @@ | ||
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# ============================================================================== | ||
|
||
def get_linked_tensorrt_version() -> tuple[int,int,int]: ... | ||
def get_loaded_tensorrt_version() -> tuple[int,int,int]: ... | ||
def get_registered_op_converters() -> list[str]: ... | ||
def is_tensorrt_enabled() -> bool: ... |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,38 @@ | ||
/* Copyright 2021 The TensorFlow Authors. All Rights Reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. | ||
==============================================================================*/ | ||
|
||
#ifndef TENSORFLOW_COMPILER_TF2TENSORRT_COMMON_DATAVEC_H_ | ||
#define TENSORFLOW_COMPILER_TF2TENSORRT_COMMON_DATAVEC_H_ | ||
|
||
#include <vector> | ||
|
||
#include "tensorflow/core/framework/tensor.h" | ||
#include "tensorflow/core/platform/types.h" | ||
|
||
namespace tensorflow { | ||
namespace tensorrt { | ||
|
||
// Input/output data format for OpConverterTest::BuildAndRun(). | ||
struct InputOutputData { | ||
size_t TotalBytes() const { return tensor.TotalBytes(); } | ||
string name; | ||
Tensor tensor; | ||
}; | ||
|
||
using DataVec = std::vector<InputOutputData>; | ||
|
||
} // namespace tensorrt | ||
} // namespace tensorflow | ||
#endif |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,242 @@ | ||
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. | ||
==============================================================================*/ | ||
|
||
#include "tensorflow/compiler/tf2tensorrt/common/utils.h" | ||
|
||
#include <tuple> | ||
|
||
#if GOOGLE_CUDA && GOOGLE_TENSORRT | ||
#include "absl/base/call_once.h" | ||
#include "absl/strings/str_cat.h" | ||
#include "absl/strings/str_join.h" | ||
#include "tensorflow/core/lib/core/errors.h" | ||
#include "tensorflow/core/profiler/lib/traceme.h" | ||
#include "third_party/tensorrt/NvInferPlugin.h" | ||
|
||
#endif | ||
|
||
namespace tensorflow { | ||
namespace tensorrt { | ||
|
||
std::tuple<int, int, int> GetLinkedTensorRTVersion() { | ||
#if GOOGLE_CUDA && GOOGLE_TENSORRT | ||
return std::tuple<int, int, int>{NV_TENSORRT_MAJOR, NV_TENSORRT_MINOR, | ||
NV_TENSORRT_PATCH}; | ||
#else | ||
return std::tuple<int, int, int>{0, 0, 0}; | ||
#endif | ||
} | ||
|
||
std::tuple<int, int, int> GetLoadedTensorRTVersion() { | ||
#if GOOGLE_CUDA && GOOGLE_TENSORRT | ||
int ver = getInferLibVersion(); | ||
int major = ver / 1000; | ||
ver = ver - major * 1000; | ||
int minor = ver / 100; | ||
int patch = ver - minor * 100; | ||
return std::tuple<int, int, int>{major, minor, patch}; | ||
#else | ||
return std::tuple<int, int, int>{0, 0, 0}; | ||
#endif | ||
} | ||
|
||
} // namespace tensorrt | ||
} // namespace tensorflow | ||
|
||
#if GOOGLE_CUDA && GOOGLE_TENSORRT | ||
namespace tensorflow { | ||
namespace tensorrt { | ||
|
||
Status GetTrtBindingIndex(const char* tensor_name, int profile_index, | ||
const nvinfer1::ICudaEngine* cuda_engine, | ||
int* binding_index) { | ||
tensorflow::profiler::TraceMe activity( | ||
"GetTrtBindingIndex", tensorflow::profiler::TraceMeLevel::kInfo); | ||
// If the engine has been built for K profiles, the first getNbBindings() / K | ||
// bindings are used by profile number 0, the following getNbBindings() / K | ||
// bindings are used by profile number 1 etc. | ||
// | ||
// GetBindingIndex(tensor_name) returns the binding index for the progile 0. | ||
// We can also consider it as a "binding_index_within_profile". | ||
*binding_index = cuda_engine->getBindingIndex(tensor_name); | ||
if (*binding_index == -1) { | ||
const string msg = absl::StrCat("Input node ", tensor_name, " not found"); | ||
return errors::NotFound(msg); | ||
} | ||
int n_profiles = cuda_engine->getNbOptimizationProfiles(); | ||
// If we have more then one optimization profile, then we need to shift the | ||
// binding index according to the following formula: | ||
// binding_index_within_engine = binding_index_within_profile + | ||
// profile_index * bindings_per_profile | ||
const int bindings_per_profile = cuda_engine->getNbBindings() / n_profiles; | ||
*binding_index = *binding_index + profile_index * bindings_per_profile; | ||
return Status::OK(); | ||
} | ||
|
||
Status GetTrtBindingIndex(int network_input_index, int profile_index, | ||
const nvinfer1::ICudaEngine* cuda_engine, | ||
int* binding_index) { | ||
const string input_name = | ||
absl::StrCat(IONamePrefixes::kInputPHName, network_input_index); | ||
return GetTrtBindingIndex(input_name.c_str(), profile_index, cuda_engine, | ||
binding_index); | ||
} | ||
|
||
namespace { | ||
|
||
void InitializeTrtPlugins(nvinfer1::ILogger* trt_logger) { | ||
#if defined(PLATFORM_WINDOWS) | ||
LOG_WARNING_WITH_PREFIX | ||
<< "Windows support is provided experimentally. No guarantee is made " | ||
"regarding functionality or engineering support. Use at your own " | ||
"risk."; | ||
#endif | ||
LOG(INFO) << "Linked TensorRT version: " | ||
<< absl::StrJoin(GetLinkedTensorRTVersion(), "."); | ||
LOG(INFO) << "Loaded TensorRT version: " | ||
<< absl::StrJoin(GetLoadedTensorRTVersion(), "."); | ||
|
||
bool plugin_initialized = initLibNvInferPlugins(trt_logger, ""); | ||
if (!plugin_initialized) { | ||
LOG(ERROR) << "Failed to initialize TensorRT plugins, and conversion may " | ||
"fail later."; | ||
} | ||
|
||
int num_trt_plugins = 0; | ||
nvinfer1::IPluginCreator* const* trt_plugin_creator_list = | ||
getPluginRegistry()->getPluginCreatorList(&num_trt_plugins); | ||
if (!trt_plugin_creator_list) { | ||
LOG_WARNING_WITH_PREFIX << "Can not find any TensorRT plugins in registry."; | ||
} else { | ||
VLOG(1) << "Found the following " << num_trt_plugins | ||
<< " TensorRT plugins in registry:"; | ||
for (int i = 0; i < num_trt_plugins; ++i) { | ||
if (!trt_plugin_creator_list[i]) { | ||
LOG_WARNING_WITH_PREFIX | ||
<< "TensorRT plugin at index " << i | ||
<< " is not accessible (null pointer returned by " | ||
"getPluginCreatorList for this plugin)"; | ||
} else { | ||
VLOG(1) << " " << trt_plugin_creator_list[i]->getPluginName(); | ||
} | ||
} | ||
} | ||
} | ||
|
||
} // namespace | ||
|
||
void MaybeInitializeTrtPlugins(nvinfer1::ILogger* trt_logger) { | ||
static absl::once_flag once; | ||
absl::call_once(once, InitializeTrtPlugins, trt_logger); | ||
} | ||
|
||
} // namespace tensorrt | ||
} // namespace tensorflow | ||
|
||
namespace nvinfer1 { | ||
std::ostream& operator<<(std::ostream& os, | ||
const nvinfer1::TensorFormat& format) { | ||
os << "nvinfer1::TensorFormat::"; | ||
switch (format) { | ||
case nvinfer1::TensorFormat::kLINEAR: | ||
os << "kLINEAR"; | ||
break; | ||
|
||
case nvinfer1::TensorFormat::kCHW2: | ||
os << "kCHW2"; | ||
break; | ||
|
||
case nvinfer1::TensorFormat::kHWC8: | ||
os << "kHWC8"; | ||
break; | ||
|
||
case nvinfer1::TensorFormat::kCHW4: | ||
os << "kCHW4"; | ||
break; | ||
|
||
case nvinfer1::TensorFormat::kCHW16: | ||
os << "kCHW16"; | ||
break; | ||
|
||
case nvinfer1::TensorFormat::kCHW32: | ||
os << "kCHW32"; | ||
break; | ||
|
||
#if IS_TRT_VERSION_GE(8, 0, 0, 0) | ||
case nvinfer1::TensorFormat::kDHWC8: | ||
os << "kDHWC8"; | ||
break; | ||
|
||
case nvinfer1::TensorFormat::kCDHW32: | ||
os << "kCDHW32"; | ||
break; | ||
|
||
case nvinfer1::TensorFormat::kHWC: | ||
os << "kHWC"; | ||
break; | ||
|
||
case nvinfer1::TensorFormat::kDLA_LINEAR: | ||
os << "kDLA_LINEAR"; | ||
break; | ||
|
||
case nvinfer1::TensorFormat::kDLA_HWC4: | ||
os << "kDLA_HWC4"; | ||
break; | ||
|
||
case nvinfer1::TensorFormat::kHWC16: | ||
os << "kHWC16"; | ||
break; | ||
#endif | ||
|
||
default: | ||
os << "unknown format"; | ||
} | ||
return os; | ||
} | ||
|
||
std::ostream& operator<<(std::ostream& os, const nvinfer1::DataType& v) { | ||
os << "nvinfer1::DataType::"; | ||
switch (v) { | ||
case nvinfer1::DataType::kFLOAT: | ||
os << "kFLOAT"; | ||
break; | ||
case nvinfer1::DataType::kHALF: | ||
os << "kHalf"; | ||
break; | ||
#if IS_TRT_VERSION_GE(8, 6, 0, 0) | ||
case nvinfer1::DataType::kFP8: | ||
os << "kFP8"; | ||
break; | ||
#endif | ||
case nvinfer1::DataType::kINT8: | ||
os << "kINT8"; | ||
break; | ||
case nvinfer1::DataType::kINT32: | ||
os << "kINT32"; | ||
break; | ||
case nvinfer1::DataType::kBOOL: | ||
os << "kBOOL"; | ||
break; | ||
#if IS_TRT_VERSION_GE(8, 5, 0, 0) | ||
case nvinfer1::DataType::kUINT8: | ||
os << "kUINT8"; | ||
break; | ||
#endif | ||
} | ||
return os; | ||
} | ||
} // namespace nvinfer1 | ||
|
||
#endif |
Oops, something went wrong.