Skip to content

Commit

Permalink
Update README.md
Browse files Browse the repository at this point in the history
  • Loading branch information
CyrilJl authored Aug 10, 2024
1 parent 90dc3c1 commit 45d73e4
Showing 1 changed file with 8 additions and 14 deletions.
22 changes: 8 additions & 14 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,11 +1,11 @@
# <img src="https://github.com/CyrilJl/AnalytiX/blob/main/_static/logo.svg" alt="Logo OptiMask" width="40" height="40"> Analytix
# <img src="https://github.com/CyrilJl/alpyx/blob/main/_static/logo.svg" alt="Logo OptiMask" width="40" height="40"> alpyx

The ``analytix`` package is a simple wrapper around [`xgboost`](https://xgboost.readthedocs.io/en/stable/python/index.html), [`hyperopt`](https://hyperopt.github.io/hyperopt/), and [`shap`](https://shap.readthedocs.io/en/latest/).
The ``alpyx`` package (Another Learning PYthon package for eXplainability) is a simple wrapper around [`xgboost`](https://xgboost.readthedocs.io/en/stable/python/index.html), [`hyperopt`](https://hyperopt.github.io/hyperopt/), and [`shap`](https://shap.readthedocs.io/en/latest/). It provides the user with the ability to build a performant regression or classification model and use the power of the SHAP analysis to gain a better understanding of the links the model builds between its inputs and outputs.

### Current Features:
- Automatic One-Hot-Encoding for categorical variables
- Basic hyperparameter optimization using `hyperopt` with K-Folds cross-validation
- Simple explainability visualizations using `shap` (`beeswarm` and `dependence_plot`)
- Simple explainability visualizations using `shap` (`beeswarm`, `decision`, `force`, `scatter`)
- Focus on regression tasks only

### Planned Enhancements:
Expand All @@ -14,19 +14,15 @@ The ``analytix`` package is a simple wrapper around [`xgboost`](https://xgboost.
3. Support for user-defined scoring functions

## Installation

To install the package, use:

```bash
pip install analytix
pip install alpyx
```

## Basic Usage

Here's a simple example of how to use the `XGBRegressorWrapper` class:

```python
from analytix import XGBRegressorWrapper
from alpyx import XGBRegressorWrapper
from sklearn.datasets import load_diabetes

# Load the diabetes dataset
Expand All @@ -39,14 +35,12 @@ xgb.fit(X, y)
# Generate a beeswarm plot
xgb.beeswarm(X)
```

<img src="https://github.com/CyrilJl/AnalytiX/blob/main/_static/beeswarm.png" width="500">
<img src="https://github.com/CyrilJl/alpyx/blob/main/_static/beeswarm.png" width="500">

```python
# Generate a dependence plot
xgb.scatter(X, feature='s5')
```
<img src="https://github.com/CyrilJl/alpyx/blob/main/_static/dependence.png" width="500">

<img src="https://github.com/CyrilJl/AnalytiX/blob/main/_static/dependence.png" width="500">

Please note that this package is still under development, and features may change or expand in future versions.
Please note that this package is still under development, and features may change or expand in future versions.

0 comments on commit 45d73e4

Please sign in to comment.