forked from FindHao/ml_scripts
-
Notifications
You must be signed in to change notification settings - Fork 0
/
d2_mask.py
102 lines (84 loc) · 3.76 KB
/
d2_mask.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
from typing import Union, _alias, T
import torch
import numpy as np
import pickle
import time
List = _alias(list, T, inst=False)
import torch.profiler as profiler
def original_mask(polygons):
def _make_array(t: Union[torch.Tensor, np.ndarray]) -> np.ndarray:
# Use float64 for higher precision, because why not?
# Always put polygons on CPU (self.to is a no-op) since they
# are supposed to be small tensors.
# May need to change this assumption if GPU placement becomes useful
if isinstance(t, torch.Tensor):
t = t.cpu().numpy()
return np.asarray(t).astype("float64")
def process_polygons(
polygons_per_instance: List[Union[torch.Tensor, np.ndarray]]
) -> List[np.ndarray]:
if not isinstance(polygons_per_instance, list):
raise ValueError(
"Cannot create polygons: Expect a list of polygons per instance. "
"Got '{}' instead.".format(type(polygons_per_instance))
)
# transform each polygon to a numpy array
polygons_per_instance = [_make_array(p) for p in polygons_per_instance]
for polygon in polygons_per_instance:
if len(polygon) % 2 != 0 or len(polygon) < 6:
raise ValueError(f"Cannot create a polygon from {len(polygon)} coordinates.")
return polygons_per_instance
return [
process_polygons(polygons_per_instance) for polygons_per_instance in polygons
]
def mask2(polygons):
def _make_array(t: Union[torch.Tensor, np.ndarray]) -> np.ndarray:
# Use float64 for higher precision, because why not?
# Always put polygons on CPU (self.to is a no-op) since they
# are supposed to be small tensors.
# May need to change this assumption if GPU placement becomes useful
if isinstance(t, torch.Tensor):
t = t.cpu().numpy()
return np.asarray(t).astype("float64")
def process_polygons(
polygons_per_instance: List[Union[torch.Tensor, np.ndarray]]
) -> List[np.ndarray]:
if not isinstance(polygons_per_instance, list):
raise ValueError(
"Cannot create polygons: Expect a list of polygons per instance. "
"Got '{}' instead.".format(type(polygons_per_instance))
)
# transform each polygon to a numpy array
polygons_per_instance = [_make_array(p) for p in polygons_per_instance]
for polygon in polygons_per_instance:
if len(polygon) % 2 != 0 or len(polygon) < 6:
raise ValueError(f"Cannot create a polygon from {len(polygon)} coordinates.")
return polygons_per_instance
return [
process_polygons(polygons_per_instance) for polygons_per_instance in polygons
]
with open("/tmp/a.txt", 'rb') as fin:
polygons = pickle.load(fin)
t0 = time.time_ns()
for i in range(100):
original_mask(polygons)
t1 = time.time_ns()
print('{:<20} {:>20}'.format("Total Wall Time:", "%.3f milliseconds" % ((t1 - t0) / 1_000_000)), sep='')
# t0 = time.time_ns()
# activity_groups = []
# activity_groups.append(profiler.ProfilerActivity.CUDA)
# activity_groups.append(profiler.ProfilerActivity.CPU)
# profile_detailed=True
# with profiler.profile(
# schedule=profiler.schedule(wait=0, warmup=0, active=1),
# activities=activity_groups,
# record_shapes=profile_detailed,
# profile_memory=profile_detailed,
# with_stack=profile_detailed,
# with_flops=profile_detailed,
# on_trace_ready=profiler.tensorboard_trace_handler("/tmp/logs/")
# ) as prof:
# original_mask(polygons)
# prof.export_chrome_trace("/tmp/a.pt.trace.json")
# t1 = time.time_ns()
# print('{:<20} {:>20}'.format("Total Wall Time:", "%.3f milliseconds" % ((t1 - t0) / 1_000_000)), sep='')