Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Feat: Eisenstein integers #543

Merged
merged 12 commits into from
Oct 8, 2024
7 changes: 7 additions & 0 deletions field/eisenstein/doc.go
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
// Package Eisenstein provides Eisenstein integer arithmetic.
//
// The Eisenstein integers form a commutative ring of algebraic integers in the
// algebraic number field Q(ω) – the third cyclotomic field. These are of the
// form z = a + bω, where a and b are integers and ω is a primitive third root
// of unity i.e. ω²+ω+1 = 0.
package eisenstein
174 changes: 174 additions & 0 deletions field/eisenstein/eisenstein.go
Original file line number Diff line number Diff line change
@@ -0,0 +1,174 @@
package eisenstein

import (
"math/big"
)

// A ComplexNumber represents an arbitrary-precision Eisenstein integer.
type ComplexNumber struct {
A0, A1 *big.Int
}

func (z *ComplexNumber) init() {
if z.A0 == nil {
z.A0 = new(big.Int)

}
if z.A1 == nil {
z.A1 = new(big.Int)

}
}

// String implements Stringer interface for fancy printing
func (z *ComplexNumber) String() string {
return z.A0.String() + "+(" + z.A1.String() + "*ω)"
}

// Equal returns true if z equals x, false otherwise
func (z *ComplexNumber) Equal(x *ComplexNumber) bool {
return z.A0.Cmp(x.A0) == 0 && z.A1.Cmp(x.A1) == 0
}

// Set sets z to x, and returns z.
func (z *ComplexNumber) Set(x *ComplexNumber) *ComplexNumber {
z.init()
z.A0.Set(x.A0)
z.A1.Set(x.A1)
return z
}

// SetZero sets z to 0, and returns z.
func (z *ComplexNumber) SetZero() *ComplexNumber {
z.A0 = big.NewInt(0)
z.A1 = big.NewInt(0)
return z
}

// SetOne sets z to 1, and returns z.
func (z *ComplexNumber) SetOne() *ComplexNumber {
z.A0 = big.NewInt(1)
z.A1 = big.NewInt(0)
return z
}

// Neg sets z to the negative of x, and returns z.
func (z *ComplexNumber) Neg(x *ComplexNumber) *ComplexNumber {
z.init()
z.A0.Neg(x.A0)
z.A1.Neg(x.A1)
return z
}

// Conjugate sets z to the conjugate of x, and returns z.
func (z *ComplexNumber) Conjugate(x *ComplexNumber) *ComplexNumber {
z.init()
z.A0.Sub(x.A0, x.A1)
z.A1.Neg(x.A1)
return z
}

// Add sets z to the sum of x and y, and returns z.
func (z *ComplexNumber) Add(x, y *ComplexNumber) *ComplexNumber {
z.init()
z.A0.Add(x.A0, y.A0)
z.A1.Add(x.A1, y.A1)
return z
}

// Sub sets z to the difference of x and y, and returns z.
func (z *ComplexNumber) Sub(x, y *ComplexNumber) *ComplexNumber {
z.init()
z.A0.Sub(x.A0, y.A0)
z.A1.Sub(x.A1, y.A1)
return z
}

// Mul sets z to the product of x and y, and returns z.
//
// Given that ω²+ω+1=0, the explicit formula is:
//
// (x0+x1ω)(y0+y1ω) = (x0y0-x1y1) + (x0y1+x1y0-x1y1)ω
func (z *ComplexNumber) Mul(x, y *ComplexNumber) *ComplexNumber {
z.init()
var t [3]big.Int
var z0, z1 big.Int
t[0].Mul(x.A0, y.A0)
t[1].Mul(x.A1, y.A1)
z0.Sub(&t[0], &t[1])
t[0].Mul(x.A0, y.A1)
t[2].Mul(x.A1, y.A0)
t[0].Add(&t[0], &t[2])
z1.Sub(&t[0], &t[1])
z.A0.Set(&z0)
z.A1.Set(&z1)
return z
}

// Norm returns the norm of z.
//
// The explicit formula is:
//
// N(x0+x1ω) = x0² + x1² - x0*x1
func (z *ComplexNumber) Norm() *big.Int {
norm := new(big.Int)
temp := new(big.Int)
norm.Add(
norm.Mul(z.A0, z.A0),
temp.Mul(z.A1, z.A1),
)
norm.Sub(
norm,
temp.Mul(z.A0, z.A1),
)
return norm
}

// QuoRem sets z to the quotient of x and y, r to the remainder, and returns z and r.
func (z *ComplexNumber) QuoRem(x, y, r *ComplexNumber) (*ComplexNumber, *ComplexNumber) {
norm := y.Norm()
yelhousni marked this conversation as resolved.
Show resolved Hide resolved
if norm.Cmp(big.NewInt(0)) == 0 {
panic("division by zero")
}
z.Conjugate(y)
z.Mul(x, z)
z.A0.Div(z.A0, norm)
z.A1.Div(z.A1, norm)
r.Mul(y, z)
r.Sub(x, r)

return z, r
}
yelhousni marked this conversation as resolved.
Show resolved Hide resolved

// HalfGCD returns the rational reconstruction of a, b.
// This outputs w, v, u s.t. w = a*u + b*v.
func HalfGCD(a, b *ComplexNumber) [3]*ComplexNumber {

var aRun, bRun, u, v, u_, v_, quotient, remainder, t, t1, t2 ComplexNumber
var sqrt big.Int

aRun.Set(a)
bRun.Set(b)
u.SetOne()
v.SetZero()
u_.SetZero()
v_.SetOne()

// Eisenstein integers form an Euclidean domain for the norm
sqrt.Sqrt(a.Norm())
for bRun.Norm().Cmp(&sqrt) >= 0 {
quotient.QuoRem(&aRun, &bRun, &remainder)
t.Mul(&u_, &quotient)
t1.Sub(&u, &t)
t.Mul(&v_, &quotient)
t2.Sub(&v, &t)
aRun.Set(&bRun)
u.Set(&u_)
v.Set(&v_)
bRun.Set(&remainder)
u_.Set(&t1)
v_.Set(&t2)
}

return [3]*ComplexNumber{&bRun, &v_, &u_}
}
Loading