This is the official PyTorch implementation of MPA (Mutual-Prototype Adaptation) (JBHI 2021).
Mutual-Prototype Adaptation for Cross-Domain Polyp Segmentation[Paper]
Chen Yang, Xiaoqing Guo, Meilu Zhu, Bulat Ibragimov, Yixuan Yuan
Install dependencies
pip install -r requirements.txt
(1) Download the CVC-DB and ETIS-Larib dataset.
(2) Put the data in the corresponding folders. The dataset files are organized as follows.
MPA-DA
├── data
│ ├── CVC-DB
│ │ ├── images
│ │ │ ├── [case_id].png
│ │ ├── labels
│ │ │ ├── [case_id].png
│ ├── ETIS-Larib
│ │ ├── images
│ │ │ ├── [case_id].png
│ │ ├── labels
│ │ │ ├── [case_id].png
(3) Split dataset into training set and test set as follows.
python preprocess.py
python ./tools/train.py
If you find our work useful in your research or publication, please cite our work:
@article{yang2021mutual,
title={Mutual-Prototype Adaptation for Cross-Domain Polyp Segmentation},
author={Yang, Chen and Guo, Xiaoqing and Zhu, Meilu and Ibragimov, Bulat and Yuan, Yixuan},
journal={IEEE Journal of Biomedical and Health Informatics},
year={2021},
publisher={IEEE}
}