Skip to content

Commit

Permalink
Migrate interactive path diagram example from Jupyter
Browse files Browse the repository at this point in the history
Co-authored-by: Sai Krishna <[email protected]>
  • Loading branch information
2 people authored and ischoegl committed Apr 20, 2024
1 parent 76cc445 commit 9576bd0
Show file tree
Hide file tree
Showing 3 changed files with 322 additions and 0 deletions.
1 change: 1 addition & 0 deletions AUTHORS
Original file line number Diff line number Diff line change
Expand Up @@ -60,6 +60,7 @@ Ingmar Schoegl (@ischoegl), Louisiana State University
Santosh Shanbhogue (@santoshshanbhogue), Massachusetts Institute of Technology
Travis Sikes (@tsikes)
Harsh Sinha (@sin-ha)
Sai Krishna Sirumalla (@skrsna), Northeastern University
David Sondak
Raymond Speth (@speth), Massachusetts Institute of Technology
Su Sun (@ssun30), Northeastern University
Expand Down
37 changes: 37 additions & 0 deletions doc/sphinx/conf.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,7 @@
import sys, os, re
from pathlib import Path
from sphinx_gallery.sorting import ExplicitOrder
from sphinx_gallery.scrapers import figure_rst

# If extensions (or modules to document with autodoc) are in another directory,
# add these directories to sys.path here. If the directory is relative to the
Expand Down Expand Up @@ -46,6 +47,41 @@
'sphinx_copybutton',
]


class GraphvizScraper():
"""
Capture Graphviz objects that are assigned to variables in the global namespace.
"""
def __init__(self):
# IDs of graphviz objects that have already been seen and processed
self.processed = set()

def __repr__(self):
return 'GraphvizScraper'

def __call__(self, block, block_vars, gallery_conf):
import graphviz
# We use a list to collect references to image names
image_names = list()

# The `image_path_iterator` is created by Sphinx-Gallery, it will yield
# a path to a file name that adheres to Sphinx-Gallery naming convention.
image_path_iterator = block_vars['image_path_iterator']

# Define a list of our already-created figure objects.
for obj in block_vars["example_globals"].values():
if isinstance(obj, graphviz.Source) and id(obj) not in self.processed:
self.processed.add(id(obj))
image_path = Path(next(image_path_iterator)).with_suffix(".svg")
obj.format = "svg"
obj.render(image_path.with_suffix(""))
image_names.append(image_path)

# Use the `figure_rst` helper function to generate the reST for this
# code block's figures.
return figure_rst(image_names, gallery_conf['src_dir'])


sphinx_gallery_conf = {
'filename_pattern': '\.py',
'example_extensions': {'.py', '.cpp', '.h', '.c', '.f', '.f90', '.m'},
Expand All @@ -54,6 +90,7 @@
'image_srcset': ["2x"],
'remove_config_comments': True,
'ignore_repr_types': r'matplotlib\.(text|axes|legend)',
'image_scrapers': ('matplotlib', GraphvizScraper()),
'examples_dirs': [
'../samples/python/',
'../samples/cxx/',
Expand Down
284 changes: 284 additions & 0 deletions samples/python/reactors/interactive_path_diagram.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,284 @@
"""
Interactive Reaction Path Diagrams
==================================
This example uses ``ipywidgets`` to create interactive displays of reaction path
diagrams from Cantera simulations.
Requires: cantera >= 3.0.0, matplotlib >= 2.0, ipywidgets, graphviz, scipy
.. tags:: Python, combustion, reactor network, plotting, reaction path analysis
.. tip::
To try the interactive features, download the Jupyter notebook version of this
example: :download:`interactive_path_diagram.ipynb`.
"""

# %%
import numpy as np
from scipy import integrate
import graphviz
import os
from matplotlib import pyplot as plt
from collections import defaultdict
import cantera as ct

print(f"Using Cantera version: {ct.__version__}")

# Determine if we're running in a Jupyter Notebook. If so, we can enable the interactive
# diagrams. Otherwise, just draw output for a single set of inputs.
try:
from IPython import get_ipython
if "IPKernelApp" not in get_ipython().config:
raise ImportError("console")
if "VSCODE_PID" in os.environ:
raise ImportError("vscode")
except (ImportError, AttributeError):
is_interactive = False
else:
is_interactive = True

if is_interactive:
from IPython.display import display
from matplotlib_inline.backend_inline import set_matplotlib_formats
set_matplotlib_formats('pdf', 'svg')
from ipywidgets import widgets, interact


# %%
# When using Cantera, the first thing you usually need is an object representing some
# phase of matter. Here, we'll create a gas mixture using GRI-Mech:

gas = ct.Solution("gri30.yaml")

# %%
# Use Shock tube ignition delay measurement conditions corresponding to the experiments
# by Spadaccini and Colket [1]_.
#
# * CH₄-C₂H₆-O₂-Ar (3.29%-0.21%-7%-89.5%)
# * :math:`\phi` = 1.045
# * P = 6.1 - 7.6 atm
# * T = 1356 - 1688 K

# Set temperature, pressure, and composition
gas.TPX = 1550.0, 6.5 * ct.one_atm, "CH4:3.29, C2H6:0.21, O2:7 , Ar:89.5"

# %%
# Residence time is close to ignition delay reported by Spadaccini and Colket (1994).

residence_time = 1e-3

# %%
# Create a batch reactor object and set solver tolerances

reactor = ct.IdealGasConstPressureReactor(gas, energy="on")
reactor_network = ct.ReactorNet([reactor])
reactor_network.atol = 1e-12
reactor_network.rtol = 1e-12

# %%
# Store time, pressure, temperature and mole fractions

profiles = defaultdict(list)
time = 0
steps = 0
while time < residence_time:
profiles["time"].append(time)
profiles["pressure"].append(gas.P)
profiles["temperature"].append(gas.T)
profiles["mole_fractions"].append(gas.X)
time = reactor_network.step()
steps += 1

# %%
# Interactive reaction path diagram
# ---------------------------------
#
# When executed as a Jupyter Notebook, the plotted time step, threshold and element can
# be changed using the slider provided by IPyWidgets.

def plot_reaction_path_diagrams(plot_step, threshold, details, element):
P = profiles["pressure"][plot_step]
T = profiles["temperature"][plot_step]
X = profiles["mole_fractions"][plot_step]
time = profiles["time"][plot_step]
gas.TPX = T, P, X

diagram = ct.ReactionPathDiagram(gas, element)
diagram.threshold = threshold
diagram.title = f"time = {time:.2g} s"

diagram.show_details = details
graph = graphviz.Source(diagram.get_dot())
if is_interactive:
display(graph)
else:
return graph

if is_interactive:
interact(
plot_reaction_path_diagrams,
plot_step=widgets.IntSlider(value=100, min=0, max=steps-1, step=10),
threshold=widgets.FloatSlider(value=0.1, min=0.001, max=0.4, step=0.01),
details=widgets.ToggleButton(),
element=widgets.Dropdown(
options=gas.element_names,
value="C",
description="Element",
disabled=False,
),
)
else:
# For non-interactive use, just draw the diagram for a specified time step
diagram = plot_reaction_path_diagrams(
plot_step=100,
threshold=0.1,
details=False,
element="C"
)

# %%
# Interactive plot of instantaneous fluxes
# ----------------------------------------
#
# Find reactions containing the species of interest, C₂H₆ in this case.

C2H6_stoichiometry = np.zeros_like(gas.reactions())
for i, r in enumerate(gas.reactions()):
C2H6_moles = r.products.get("C2H6", 0) - r.reactants.get("C2H6", 0)
C2H6_stoichiometry[i] = C2H6_moles
C2H6_reaction_indices = C2H6_stoichiometry.nonzero()[0]

# %%
# The following cell calculates net rates of progress of reactions containing the
# species of interest and stores them.

profiles["C2H6_production_rates"] = []
for i in range(len(profiles["time"])):
X = profiles["mole_fractions"][i]
t = profiles["time"][i]
T = profiles["temperature"][i]
P = profiles["pressure"][i]
gas.TPX = (T, P, X)
C2H6_production_rates = (
gas.net_rates_of_progress
* C2H6_stoichiometry # [kmol/m^3/s]
* gas.volume_mass # Specific volume [m^3/kg].
) # overall, mol/s/g (g total in reactor, same basis as N_atoms_in_fuel)

profiles["C2H6_production_rates"].append(
C2H6_production_rates[C2H6_reaction_indices]
)

# Create the instantaneous flux plot. When executed as a Jupyter Notebook, the threshold
# for annotating of reaction strings can be changed using the slider provided by
# IPyWidgets.

plt.rcParams["figure.constrained_layout.use"] = True

def plot_instantaneous_fluxes(profiles, annotation_cutoff):
profiles = profiles
fig = plt.figure(figsize=(6, 6))
plt.plot(profiles["time"], np.array(profiles["C2H6_production_rates"]))

for i, C2H6_production_rate in enumerate(
np.array(profiles["C2H6_production_rates"]).T
):
peak_index = abs(C2H6_production_rate).argmax()
peak_time = profiles["time"][peak_index]
peak_C2H6_production = C2H6_production_rate[peak_index]
reaction_string = gas.reaction_equations(C2H6_reaction_indices)[i]

if abs(peak_C2H6_production) > annotation_cutoff:
plt.annotate(
reaction_string.replace("<=>", "="),
xy=(peak_time, peak_C2H6_production),
xytext=(
peak_time * 2,
(
peak_C2H6_production
+ 0.003
* (peak_C2H6_production / abs(peak_C2H6_production))
* (abs(peak_C2H6_production) > 0.005)
* (peak_C2H6_production < 0.06)
),
),
arrowprops=dict(
arrowstyle="->",
color="black",
relpos=(0, 0.6),
linewidth=2,
),
horizontalalignment="left",
)

plt.xlabel("Time (s)")
plt.ylabel("Net rates of C2H6 production")
plt.show()

if is_interactive:
interact(
plot_instantaneous_fluxes,
annotation_cutoff=widgets.FloatSlider(value=0.1, min=1e-2, max=4, steps=10),
profiles=widgets.fixed(profiles)
)
else:
plot_instantaneous_fluxes(annotation_cutoff=0.1, profiles=profiles)

# %%
# Interactive plot of integrated fluxes
# -------------------------------------
#
# When executed as a Jupyter Notebook, the threshold for annotating of reaction strings
# can be changed using the slider provided by iPyWidgets

# Integrate fluxes over time
integrated_fluxes = integrate.cumulative_trapezoid(
np.array(profiles["C2H6_production_rates"]),
np.array(profiles["time"]),
axis=0,
initial=0,
)

def plot_integrated_fluxes(profiles, integrated_fluxes, annotation_cutoff):
profiles = profiles
integrated_fluxes = integrated_fluxes
fig = plt.figure(figsize=(6, 6))
plt.plot(profiles["time"], integrated_fluxes)
final_time = profiles["time"][-1]
for i, C2H6_production in enumerate(integrated_fluxes.T):
total_C2H6_production = C2H6_production[-1]
reaction_string = gas.reaction_equations(C2H6_reaction_indices)[i]

if abs(total_C2H6_production) > annotation_cutoff:
plt.text(final_time * 1.06, total_C2H6_production, reaction_string,
fontsize=8)

plt.xlabel("Time (s)")
plt.ylabel("Integrated net rate of progress")
plt.title("Cumulative C₂H₆ formation")
plt.show()

if is_interactive:
interact(
plot_integrated_fluxes,
annotation_cutoff=widgets.FloatLogSlider(
value=1e-5, min=-5, max=-4, base=10, step=0.1
),
profiles=widgets.fixed(profiles),
integrated_fluxes=widgets.fixed(integrated_fluxes)
)
else:
plot_integrated_fluxes(
profiles=profiles,
integrated_fluxes=integrated_fluxes,
annotation_cutoff=1e-5
)

# %%
# References
# ----------
# .. [1] L. J. Spadaccini and M. B. Colket (1994). "Ignition delay characteristics of
# methane fuels", *Progress in Energy and Combustion Science,* 20:5, 431-460.
# Prog. Energy Combust. Sci. 20, 431.
# https://doi.org/10.1016/0360-1285(94)90011-6.

0 comments on commit 9576bd0

Please sign in to comment.