-
Notifications
You must be signed in to change notification settings - Fork 5
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #458 from CMU-Robotics-Club/vivaan-newAutonImpleme…
…ntation Raceday 2017 - Fully Autonomous
- Loading branch information
Showing
76 changed files
with
7,687 additions
and
282 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,6 @@ | ||
*.mat | ||
*.jpg | ||
*.png | ||
.DS_Store | ||
*.pyc | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,125 @@ | ||
function [trajectory] = controller() | ||
|
||
addpath('../localizer/latlonutm/Codes/matlab'); | ||
global wheel_base | ||
global velocity | ||
global steering_vel | ||
global dt | ||
|
||
save_data = true; | ||
wheel_base = 1.13; | ||
utm_zone = 17; | ||
first_heading = deg2rad(250); | ||
lat_long = [40.441670, -79.9416362]; | ||
dt = 0.001; % 1000Hz | ||
m = 50; % 20Hz | ||
velocity = 8; % m/s, 17.9mph, forward velocity | ||
steering_vel = deg2rad(40); % 40deg/s, reaction speed to control cmds | ||
|
||
[x, y, ~] = ll2utm(lat_long(1), lat_long(2)); | ||
|
||
X = [x; % X, m, UTM coors | ||
y; % Y, m, UTM coors | ||
velocity; % d_Yb, body velocity | ||
first_heading; % heading, rad, world frame | ||
0]; % d_heading, rad/s | ||
|
||
load('./waypoints.mat'); | ||
desired_traj = processWaypoints(logs); | ||
% time = linspace(0, 240, size(trajectory,2)); | ||
time = 0:dt:240; | ||
u = 0; % commanded steering angle | ||
steering = u; % steering angle | ||
trajectory = [X; lat_long(1); lat_long(2); steering]; | ||
|
||
for i = 1:size(time, 2) | ||
t = time(i); | ||
A = model(X, steering); | ||
X = A*X; | ||
steering = updateSteering(steering, u); | ||
|
||
X(4) = clampAngle(X(4)); | ||
X(5) = clampAngle(X(5)); | ||
|
||
if(mod(i, m) == 0) | ||
u = control(desired_traj, X); | ||
end | ||
|
||
% trajectory = [trajectory, X]; | ||
snapshot = summarize(X, utm_zone, steering); | ||
trajectory = [trajectory, snapshot]; | ||
end | ||
|
||
if save_data | ||
save('controller_v2.mat', 'trajectory'); | ||
end | ||
end | ||
|
||
function [desired] = processWaypoints(lat_long) | ||
[x, y, zone] = ll2utm(lat_long); | ||
desired = [x y]; | ||
end | ||
|
||
function snapshot = summarize(x, utm_zone, steeringAngle) | ||
[lat, lon] = utm2ll(x(1), x(2), utm_zone); | ||
snapshot = [x; x(1); x(2); steeringAngle]; | ||
end | ||
|
||
function a = clampAngle(a) | ||
while (a < -pi) | ||
a = a + 2*pi; | ||
end | ||
while (a > pi) | ||
a = a - 2*pi; | ||
end | ||
end | ||
|
||
function b = updateSteering(b, u) | ||
global steering_vel | ||
global dt | ||
|
||
if(b < u) | ||
b = b + steering_vel*dt; | ||
end | ||
if(b > u) | ||
b = b - steering_vel*dt; | ||
end | ||
end | ||
|
||
function a = clampSteeringAngle(a) | ||
if(a < -deg2rad(10)) | ||
a = -deg2rad(10); | ||
end | ||
if(a > deg2rad(10)) | ||
a = deg2rad(10); | ||
end | ||
end | ||
|
||
function [A] = model(x, steering) | ||
global wheel_base | ||
global dt | ||
|
||
A = [1, 0, dt*cos(x(4)), 0, 0; | ||
0, 1, dt*sin(x(4)), 0, 0; | ||
0, 0, 1, 0, 0; | ||
0, 0, 0, 1, dt; | ||
0, 0, tan(steering)/wheel_base, 0, 0]; | ||
end | ||
|
||
function [u] = control(desired_traj, X) | ||
pos = X(1:2); | ||
b = repmat(pos, size(desired_traj, 1), 1); | ||
delta = 15*15; | ||
possible = find(sum((desired_traj-b).^2, 2) < delta); | ||
if isempty(possible) | ||
u = 0; | ||
else | ||
target = desired_traj(possible(end), :); | ||
deltaPath = target - pos; | ||
u = atan2(deltaPath(2), deltaPath(1))-X(4); | ||
end | ||
u = clampSteeringAngle(clampAngle(u)); | ||
end | ||
|
||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,48 @@ | ||
% graph results | ||
|
||
clear; | ||
close all; | ||
|
||
addpath('../localizer/latlonutm/Codes/matlab'); | ||
addpath('../localizer/altmany-export_fig'); | ||
|
||
file = 'controller_v2.mat'; | ||
load(file, 'trajectory'); | ||
save_plot = false; | ||
show_maps = true; | ||
|
||
load('./waypoints_course_v2.mat'); | ||
[x, y, zone] = ll2utm(logs); | ||
desired = [x y]; | ||
desired = desired(112:(end-50), :); | ||
|
||
k = 1000; | ||
if show_maps | ||
wmline(trajectory(6,1:k:end), trajectory(7,1:k:end), 'Color', 'r') | ||
end | ||
|
||
heading = trajectory(4,1:k:end); | ||
figure(); | ||
hold on; | ||
plot(trajectory(1,1:k:end), trajectory(2,1:k:end)) | ||
quiver(trajectory(1,1:k:end), trajectory(2,1:k:end), cos(heading), sin(heading)) | ||
plot(desired(:,1), desired(:,2), 'g') | ||
hold off; | ||
title(['Map ', file]); | ||
|
||
headingd = rad2deg(heading); | ||
figure(); | ||
hold on; | ||
plot(1:length(headingd), headingd) | ||
title(['Heading ', file]); | ||
|
||
figure(); | ||
p = k/20; | ||
plot(1:p:size(trajectory,2), trajectory(8,1:p:end)) | ||
title('Control input'); | ||
|
||
% plot on google maps | ||
if show_maps | ||
xy = [trajectory(6,1:k:end); trajectory(7,1:k:end)]; | ||
fprintf(1, '%5.20f, %5.20f\n', xy); | ||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,137 @@ | ||
function [trajectory] = controller_pure() | ||
% https://www.ri.cmu.edu/pub_files/2009/2/Automatic_Steering_Methods_for_Autonomous_Automobile_Path_Tracking.pdf | ||
% section 2.2 | ||
|
||
addpath('../localizer/latlonutm/Codes/matlab'); | ||
global wheel_base | ||
global velocity | ||
global steering_vel | ||
global dt | ||
|
||
save_data = true; | ||
wheel_base = 1.13; | ||
utm_zone = 17; | ||
first_heading = deg2rad(250); | ||
lat_long = [40.442867, -79.9427395]; % [40.441670, -79.9416362]; | ||
dt = 0.001; % 1000Hz | ||
m = 50; % 20Hz | ||
velocity = 8; % m/s, 17.9mph, forward velocity | ||
steering_vel = deg2rad(40); % 40deg/s, reaction speed to control cmds | ||
% full range in 0.5s | ||
|
||
[x, y, ~] = ll2utm(lat_long(1), lat_long(2)); | ||
|
||
X = [x; % X, m, UTM coors | ||
y; % Y, m, UTM coors | ||
velocity; % d_Yb, body velocity | ||
first_heading; % heading, rad, world frame | ||
0]; % d_heading, rad/s | ||
|
||
load('./waypoints_tri.mat'); | ||
desired_traj = processWaypoints(logs); | ||
% time = linspace(0, 240, size(trajectory,2)); | ||
time = 0:dt:60; % 240; | ||
u = 0; % commanded steering angle | ||
steering = u; % steering angle | ||
trajectory = [X; lat_long(1); lat_long(2); steering]; | ||
|
||
for i = 1:size(time, 2) | ||
t = time(i); | ||
A = model(X, steering); | ||
X = A*X; | ||
steering = updateSteering(steering, u); | ||
|
||
X(4) = clampAngle(X(4)); | ||
X(5) = clampAngle(X(5)); | ||
|
||
if(mod(i, m) == 0) | ||
u = control(desired_traj, X); | ||
end | ||
|
||
% trajectory = [trajectory, X]; | ||
snapshot = summarize(X, utm_zone, steering); | ||
trajectory = [trajectory, snapshot]; | ||
end | ||
|
||
if save_data | ||
save('controller_tri_v1.mat', 'trajectory'); | ||
end | ||
end | ||
|
||
function [desired] = processWaypoints(lat_long) | ||
[x, y, zone] = ll2utm(lat_long); | ||
desired = [x y]; | ||
end | ||
|
||
function snapshot = summarize(x, utm_zone, steeringAngle) | ||
[lat, lon] = utm2ll(x(1), x(2), utm_zone); | ||
snapshot = [x; x(1); x(2); steeringAngle]; | ||
end | ||
|
||
function a = clampAngle(a) | ||
while (a < -pi) | ||
a = a + 2*pi; | ||
end | ||
while (a > pi) | ||
a = a - 2*pi; | ||
end | ||
end | ||
|
||
function b = updateSteering(b, u) | ||
global steering_vel | ||
global dt | ||
|
||
if(b < u) | ||
b = b + steering_vel*dt; | ||
end | ||
if(b > u) | ||
b = b - steering_vel*dt; | ||
end | ||
end | ||
|
||
function a = clampSteeringAngle(a) | ||
if(a < -deg2rad(10)) | ||
a = -deg2rad(10); | ||
end | ||
if(a > deg2rad(10)) | ||
a = deg2rad(10); | ||
end | ||
end | ||
|
||
function [A] = model(x, steering) | ||
global wheel_base | ||
global dt | ||
|
||
A = [1, 0, dt*cos(x(4)), 0, 0; | ||
0, 1, dt*sin(x(4)), 0, 0; | ||
0, 0, 1, 0, 0; | ||
0, 0, 0, 1, dt; | ||
0, 0, tan(steering)/wheel_base, 0, 0]; | ||
end | ||
|
||
function [u] = control(desired_traj, X) | ||
global wheel_base | ||
|
||
pos = X(1:2)'; | ||
pos_b = repmat(pos, size(desired_traj, 1), 1); | ||
delta = 15; | ||
cutoff = 100; | ||
delta = delta * delta; | ||
|
||
distances = sum((desired_traj - pos_b).^2, 2); | ||
[~, closest_idx] = min(distances); | ||
last_idx = min([length(distances), closest_idx + cutoff]); | ||
possible = find(distances(1:last_idx) < delta); | ||
if isempty(possible) | ||
u = 0; | ||
else | ||
target = desired_traj(possible(end), :); | ||
deltaPath = target - pos; | ||
|
||
k = 0.8; | ||
a = atan2(deltaPath(2), deltaPath(1))-X(4); | ||
u = atan2(2*wheel_base*sin(a), k*X(3)); | ||
end | ||
u = clampSteeringAngle(clampAngle(u)); | ||
end | ||
|
Oops, something went wrong.