Skip to content

CBMM/Reducing-Training-Time-with-More-Data-a-Review-18.409-project

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Reducing Training Time with More Data - a Review (18.409 final project)

In most machine learning problems, we tend to think that training algorithms require more computation time as the number of training samples increases. In this paper we discuss two contexts in which this is not true. In the case of SVM optimization, assuming some desired generalization error, the PEGASOS algorithm statistically needs less runtime with more data. In the case of learning halfspaces over sparse vectors, more training examples reduce the training runtime from exponential to polynomial time.

Document link: https://www.ideals.illinois.edu/handle/2142/112789

citation:

@article{Miranda2015,
author = {Miranda, Brando and Wu, Michael and Sun, He},
keywords = {SVM,ai,algorithmic aspects of machine learning,artificial intelligence,machine learning,machine learning theory,pegasos,statistical machine learning,text},
month = {may},
title = {{Reducing Training Time with More Data - a Review}},
url = {https://www.ideals.illinois.edu/handle/2142/112789},
year = {2015}
}

or

Miranda, B., Wu, M., & Sun, H. (2015). Reducing Training Time with More Data - a Review. https://www.ideals.illinois.edu/handle/2142/112789

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • TeX 100.0%