Skip to content

Commit

Permalink
Merge pull request #5 from ByteTora/dev
Browse files Browse the repository at this point in the history
Dev
  • Loading branch information
ByteTora authored Nov 10, 2024
2 parents 9d80a52 + 931a9f2 commit 4848439
Show file tree
Hide file tree
Showing 29 changed files with 731 additions and 660 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -1345,7 +1345,7 @@
},
{
"cell_type": "code",
"execution_count": 23,
"execution_count": null,
"metadata": {},
"outputs": [
{
Expand Down Expand Up @@ -1575,11 +1575,15 @@
"source": [
"## 测验\n",
"\n",
"\n",
"- 如何将 ML 应用于虚拟筛选? \n",
"- 您了解哪些机器学习算法? \n",
"- 成功应用 ML 的必要先决条件是什么? "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": []
}
],
"metadata": {
Expand Down
50 changes: 0 additions & 50 deletions teachopencadd/talktorials/T008_query_pdb/README.md

This file was deleted.

57 changes: 57 additions & 0 deletions teachopencadd/talktorials/T008_查询pdb/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,57 @@
# T008 ·蛋白质数据采集:蛋白质数据库 (PDB)



## 本次讲座的目的


在这个讲座中,我们为下一个讲座奠定了基础,我们将为 EGFR 生成基于配体的集合药效团。因此,我们:
(i) 从 PDB 数据库中获取满足特定条件的所有 EGFR PDB ID(例如,高分辨率的配体结合结构),
(ii) 回收具有最佳结构质量的蛋白质-配体结构,
(iii) 调整所有结构,以及
(iv) 提取并保存配体以用于下一次课程。


### 理论内容


- 蛋白质数据库 ()
- 使用 Python 包查询 PDB`biotite``pypdb`


### 实用内容


* 选择查询蛋白
* 获取查询 protein 的 PDB 条目数
* 查找满足特定条件的 PDB 条目
* 选择具有最高分辨率的 PDB 条目
* 从顶部结构中获取配体的元数据
* 绘制顶部配体分子
* 创建蛋白质-配体 ID 对
* 对齐 PDB 结构并提取配体



**注意:** 此讲座是 TeachOpenCADD 的一部分,该平台旨在教授特定领域的技能并提供管道模板作为研究项目的起点。

Authors:

- Anja Georgi, CADD seminar, 2017, Charité/FU Berlin
- Majid Vafadar, CADD seminar, 2018, Charité/FU Berlin
- Jaime Rodríguez-Guerra, [Volkamer lab, Charité](https://volkamerlab.org/)
- Dominique Sydow, [Volkamer lab, Charité](https://volkamerlab.org/)


__Talktorial T008__:此演讲是第一篇 TeachOpenCADD 出版物 ([_J. Cheminform._ (2019), **11**, 1-7]https://jcheminf.biomedcentral.com/articles/10.1186/s13321-019-0351-x)) 中描述的 TeachOpenCADD 管道的一部分,由演讲 T001-T010 组成。


### 引用


* Protein Data Bank
([PDB website](http://www.rcsb.org/))
* `pypdb` Python package
([_Bioinformatics_ (2016), **1**, 159-60](https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btv543); [documentation](http://www.wgilpin.com/pypdb_docs/html/))
* `biotite` Python package ([_BMC Bioinformatics_ (2018), **19**](https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-018-2367-z); [documentation](https://www.biotite-python.org/))
* Molecular superposition with the Python package `opencadd` ([repository](https://github.com/volkamerlab/opencadd))

Large diffs are not rendered by default.

Original file line number Diff line number Diff line change
@@ -1,59 +1,58 @@
# T009 · Ligand-based pharmacophores
# T009 ·基于配体的药效团

**Note:** This talktorial is a part of TeachOpenCADD, a platform that aims to teach domain-specific skills and to provide pipeline templates as starting points for research projects.

Authors:

- Pratik Dhakal, CADD seminar, 2017, Charité/FU Berlin
- Florian Gusewski, CADD seminar, 2018, Charité/FU Berlin
- Jaime Rodríguez-Guerra, [Volkamer lab](https://volkamerlab.org/), Charité
- Dominique Sydow, [Volkamer lab](https://volkamerlab.org/), Charité
**注意**:请逐个单元格运行此笔记本。也可以在一个中运行所有单元格,但是,可能会缺少部分 nglview 3D 表示。


__Talktorial T009__: This talktorial is part of the TeachOpenCADD pipeline described in the [first TeachOpenCADD paper](https://jcheminf.biomedcentral.com/articles/10.1186/s13321-019-0351-x), comprising of talktorials T001-T010.
## 本次演讲的目的
在本演讲中,我们使用已知的 EGFR 配体(在之前的演讲中选择和对齐)来识别每个配体的供体、受体和疏水药效团特征。然后将这些特征聚类以定义一个集合药效团,该药效团代表一组已知 EGFR 配体的特性,可用于通过虚拟筛选搜索新的 EGFR 配体。

## 学习目标

**Note**: Please run this notebook cell by cell. Running all cells in one is possible also, however, part of the nglview 3D representations might be missing.
### 理论中的内容

* 药效团建模
* 基于结构和配体的药效团建模
* 使用药效团进行虚拟筛选
* 聚类:k-means

## Aim of this talktorial

In this talktorial, we use known EGFR ligands, which were selected and aligned in the previous talktorial, to identify donor, acceptor, and hydrophobic pharmacophoric features for each ligand. Those features are then clustered to define an ensemble pharmacophore, which represents the properties of the set of known EGFR ligands and can be used to search for novel EGFR ligands via virtual screening.
### 内容 *实战*

* 从以前的谈话中获取预对齐的配体
* 使用 NGLView 显示配体
* 提取物药效团特性
* 显示所有配体的药效团特征
* 氢键供体
* 氢键受体
* 疏水触点
* 按特征类型收集特征坐标
* 生成集合药效团
* 为 k-means 聚类设置静态参数
* 设置集群选择的静态参数
* 定义 k-means 聚类和聚类选择函数
* 集群功能
* 选择相关集群
* 获取选定的集群坐标
* 显示集群
* 氢键供体
* 氢键受体
* 疏水触点
* 显示集合药效团

## Learning goals


### Contents in *Theory*
**Note:** This talktorial is a part of TeachOpenCADD, a platform that aims to teach domain-specific skills and to provide pipeline templates as starting points for research projects.

* Pharmacophore modeling
* Structure- and ligand-based pharmacophore modeling
* Virtual screening with pharmacophores
* Clustering: k-means
Authors:

- Pratik Dhakal, CADD seminar, 2017, Charité/FU Berlin
- Florian Gusewski, CADD seminar, 2018, Charité/FU Berlin
- Jaime Rodríguez-Guerra, [Volkamer lab](https://volkamerlab.org/), Charité
- Dominique Sydow, [Volkamer lab](https://volkamerlab.org/), Charité

### Contents in *Practical*

* Get pre-aligned ligands from previous talktorial
* Show ligands with NGLView
* Extract pharmacophore features
* Show the pharmacophore features of all ligands
* Hydrogen bond donors
* Hydrogen bond acceptors
* Hydrophobic contacts
* Collect coordinates of features per feature type
* Generate ensemble pharmacophores
* Set static parameters for k-means clustering
* Set static parameters for cluster selection
* Define k-means clustering and cluster selection functions
* Cluster features
* Select relevant clusters
* Get selected cluster coordinates
* Show clusters
* Hydrogen bond donors
* Hydrogen bond acceptors
* Hydrophobic contacts
* Show ensemble pharmacophore
__Talktorial T009__: This talktorial is part of the TeachOpenCADD pipeline described in the [first TeachOpenCADD paper](https://jcheminf.biomedcentral.com/articles/10.1186/s13321-019-0351-x), comprising of talktorials T001-T010.


### References
Expand Down
Loading

0 comments on commit 4848439

Please sign in to comment.