-
Notifications
You must be signed in to change notification settings - Fork 4
References
The functions in tidywater are based on published models found in the following sources and cited in the package documentation:
-
AWWA. (1977). C400-75: AWWA Standard for Asbestos-Cement Pressure Pipe, 4 in. through 24 in., for Water and Other Liquids.
-
Crittenden, J. C., Trussell, R., Hand, D., Howe, J. K., & Tchobanoglous, G., Borchardt, J. H. (2012). MWH’s Water Treatment: Principles and Design (Third). John Wiley & Sons Inc.
-
Langelier, W. F. (1936). The Analytical Control of Anti‐Corrosion Water Treatment. Journal AWWA, 28(10), 1500–1521. https://doi.org/10.1002/j.1551-8833.1936.tb13785.x
-
Plummer, L. N., & Busenberg, E. (1982). The Solubilities of Calcite Aragonite and Vaterite in CO2-H2O Solutions between 0 and 90 Degrees C, and an Evaluation of the Aqueous Model for the System CaCO3-CO2-H2O. Geochimica et Cosmochimica Acta, 46, 1011–1040. https://doi.org/10.1016/0016-7037(82)90056-4
-
U.S. EPA. (1980). 40 CFR Part 141, Interim Primary Drinking Water Regulations; Amendments. Federal Register, 45(168), 57332–57357.
-
Schock, M. R. (1984). Temperature and Ionic Strength Corrections To the Langelier Index - Revisited. Journal / American Water Works Association, 76(8), 72–76. https://doi.org/10.1002/j.1551-8833.1984.tb05391.x
-
Merrill, D. T., & Sanks, R. L. (1977a). Corrosion Control by Deposition of CaCO 3 Films: Part 2, A Practical Approach for Operators . Journal AWWA, 69(12), 634–640. https://doi.org/10.1002/j.1551-8833.1977.tb06840.x
-
Merrill, D. T., & Sanks, R. L. (1977b). Corrosion Control by Deposition of CaC03 Films: Part 1, A Practical Approach for Plant Operators. Journal AWWA, 69(11), 592–599. https://doi.org/10.1002/j.1551-8833.1977.tb06828.x
-
Merrill, D. T., & Sanks, R. L. (1978). Corrosion Control by Deposition of CaCO 3 Films: Part 3, A Practical Approach for Plant Operators . Journal AWWA, 70(1), 12–18. https://doi.org/10.1002/j.1551-8833.1978.tb06858.x
-
Trussell, R. (1998). Spreadsheet water conditioning. Journal - American Water Works Association, 90(6), 70–81. https://doi.org/10.1002/j.1551-8833.1998.tb08455.x
-
Ryznar, J. W. (1944). A New Index for Determining Amount of Calcium Carbonate Scale Formed by a Water. Journal AWWA, 36(4), 472–483. https://doi.org/10.1002/j.1551-8833.1944.tb20016.x
-
LARSON, T. E., & SKOLD, R. v. (1958). Laboratory Studies Relating Mineral Quality of Water To Corrosion of Steel and Cast Iron. CORROSION, 14(6), 43–46. https://doi.org/10.5006/0010-9312-14.6.43
- Cho, H. (1996). 2-METHYLISOBORNEOL AND NATURAL ORGANIC MATTER ADSORPTION BY POWDERED ACTIVATED CARBON.
- USEPA. (2001). Water Treatment Plant Model, Version 2.0, User’s Manual. https://www.epa.gov/sites/default/files/2017-03/documents/wtp_model_v._2.0_manual_508.pdf
-
Benjamin, M. M. (2002) Water Chemistry, 1st Edition, McGraw-Hill, New York, NY.
-
Crittenden, J. C., Trussell, R., Hand, D., Howe, J. K., & Tchobanoglous, G., Borchardt, J. H. (2012). MWH’s Water Treatment: Principles and Design (Third). John Wiley & Sons Inc.
-
Harned, H., & Hamer, W. (1933). The Ionization Constant of Water and the Dissociation of Water in Potassium Chloride Solutions from Electromotive Forces of Cells without Liquid Junction. Journal of the American Chemical Society, 55(6), 2194–2206. https://doi.org/10.1021/ja01333a002
-
Harned, H., & Owen, B. (1958). The Physical Chemistry of Electrolytic Solutions (Third). Reinhold Publishing Corporation.
-
Lewis, G., & Randall, M. (1921). The Activity Coefficient of Strong Electrolytes. Journal of the American Chemical Society, 43(5), 1112–1154. https://doi.org/10.1021/ja01438a014
-
Snoeyink, V. L., & Jenkins, D. (1980). Water Chemistry. John Wiley & Sons Inc.
-
Stumm, W., & Morgan, J. (1996). Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters (Third). John Wiley & Sons
-
Trussell, R. (1998). Spreadsheet water conditioning. Journal - American Water Works Association, 90(6), 70–81. https://doi.org/10.1002/j.1551-8833.1998.tb08455.x
-
USEPA. (2001). Water Treatment Plant Model, Version 2.0, User’s Manual. https://www.epa.gov/sites/default/files/2017-03/documents/wtp_model_v._2.0_manual_508.pdf
-
Nasanen, R., & Lindell, E. (1976). Studies on Lead(II) Hydroxide Salts. Part I. The Solubility Product of Pb(OH)Cl. Finnish Chemical Letters, 95.
-
Schock, M. R. (1984). Temperature and Ionic Strength Corrections To the Langelier Index - Revisited. Journal / American Water Works Association, 76(8), 72–76. https://doi.org/10.1002/j.1551-8833.1984.tb05391.x
-
Topolska, J., Manecki, M., Bajda, T., Borkiewicz, O., & Budzewski, P. (2016). Solubility of Pyromorphite Pb5(PO4)3Cl at 5-65 °C and Its Experimentally Determined Thermodynamic Parameters. The Journal of Chemical Thermodynamics, 98(282).
-
Wahman, D. G., Pinelli, M. D., Schock, M. R., & Lytle, D. A. (2021). Theoretical equilibrium lead(II) solubility revisited: Open source code and practical relationships. AWWA Water Science, 3(5), 1–15. https://doi.org/10.1002/aws2.1250
-
Gary, A., Siddiqui, M., Ozekin, K., Zhu, H. W., & Wang, C. (1998). Empirical based models for predicting chlorination and ozonation byproducts: Haloacetic acids, chloral hydrate, and bromate (EPA Report CX 819579). U.S. Environmental Protection Agency.
-
Benjamin, M. M. (2002) Water Chemistry, 1st Edition, McGraw-Hill, New York, NY.
-
Benjamin, M. M. (2015). Water chemistry. Waveland Press, Inc.
-
Crittenden, J. C., Trussell, R., Hand, D., Howe, J. K., & Tchobanoglous, G., Borchardt, J. H. (2012). MWH’s Water Treatment: Principles and Design (Third). John Wiley & Sons Inc.
-
Davies, C. (1967). Electrochemistry. Philosophical Library.
-
Edwards, M. (1997). Predicting DOC removal during enhanced coagulation. Journal / American Water Works Association, 89(5), 78–89. https://doi.org/10.1002/j.1551-8833.1997.tb08229.x
-
Lothenbach, B., Ochs, M., Wanner, H. & Yui, M. (1999) Thermodynamic Data for the Speciation and Solubility of Pd, Pb, Sn, Sb, Nb and Bi in Aqueous Solution. Japan Nuclear Cycle Development Institute, Ibaraki, Japan.
-
Nasanen, R. & Lindell, E. (1976) Studies on Lead(II) Hydroxide Salts. Part I. The Solubility Product of Pb(OH)Cl, Finnish Chemical Letters, 95.
-
Powell, K.J., Brown, P.L., Byrne, R.H., Gajda, T., Hefter, G., Sjoberg, S. & Wanner, H. (2005) Chemical Speciation of Environmentally Significant Heavy Metals with Inorganic Ligands - Part 1: The Hg2+, Cl—, OH—, CO32—, SO42—, and PO43— Aqueous Systems - (IUPAC Technical Report). Pure and Applied Chemistry, 77:4:739.
-
Powell, K. J., Brown, P. L., Byrne, R. H., Gajda, T., Hefter, G., Leuz, A. K., Sjoberg, S., & Wanner, H. (2009). Chemical Speciation of Environmentally Significant Metals with Inorganic Ligands - Part 3: The Pb2+, OH—, Cl—, CO32—, SO42—, and PO43— Systems (IUPAC Technical Report). Pure & Applied Chemistry, 81(12), 2425.
-
Schock, M.R., Wagner, I. & Oliphant, R.J. (1996) Chapter 4 - Corrosion and Solubility of Lead in Drinking Water. Internal Corrosion of Water Distribution Systems, 2nd Edition. American Water Works Association Research Foundation, Denver, CO.
-
Topolska, J., Manecki, M., Bajda, T., Borkiewicz, O., & Budzewski, P. (2016). Solubility of Pyromorphite Pb5(PO4)3Cl at 5-65 °C and Its Experimentally Determined Thermodynamic Parameters. The Journal of Chemical Thermodynamics, 98(282).
-
Wahman, D. G., Pinelli, M. D., Schock, M. R., & Lytle, D. A. (2021). Theoretical equilibrium lead(II) solubility revisited: Open source code and practical relationships. AWWA Water Science, 3(5), 1–15. https://doi.org/10.1002/aws2.1250
-
Xie, L., & Giammar, D. E. (2007). Equilibrium Solubility and Dissolution Rate of the Lead Phosphate Chloropyromorphite. Environmental Science & Technology, 41(23), 8050. https://doi.org/10.1021/es071517e
-
Zhu, Y. N., Zhu, Z. Q., Zhao, X., Liang, Y. P., & Huang, Y. H. (2015). Characterization, Dissolution, and Solubility of Lead Hydroxypyromorphite [Pb5(PO4)3OH] at 25-45 °C. Journal of Chemistry, 2015, 269387. https://doi.org/10.1155/2015/269387
-
Edwards, M., 1997. Predicting DOC removal during enhanced coagulation. J. Am. Water Works Assoc. 89, 78–89. https://doi.org/10.1002/j.1551-8833.1997.tb08229.x
-
U.S. EPA, 2001. Water Treatment Plant Model, Version 2.0, User’s Manual. Boulder, CO. https://www.epa.gov/sites/default/files/2017-03/documents/wtp_model_v._2.0_manual_508.pdf
* AWWA. (1977). C400-75: AWWA Standard for Asbestos-Cement Pressure Pipe, 4 in. through 24 in., for Water and Other Liquids.
* Chowdhury, S., Champagne, P., & McLellan, P. J. (2009). Models for predicting disinfection byproduct (DBP) formation in drinking waters: A chronological review. In Science of the Total Environment (Vol. 407, Issue 14, pp. 4189–4206). https://doi.org/10.1016/j.scitotenv.2009.04.006
* Gang, D. D., Segar, R. L., Clevenger, T. E., & Banerji, S. K. (n.d.). Using Chlorine Demand to Predict TTHM and HAA9 formation.
* Kennedy, A., Flint, L., Aligata, A., Hoffman, C., & Arias-Paić, M. (2021). Regulated disinfection byproduct formation over long residence times. Water Research, 188. https://doi.org/10.1016/j.watres.2020.116523
* Langelier, W. F. (1936). The Analytical Control of Anti‐Corrosion Water Treatment. Journal AWWA, 28(10), 1500–1521. https://doi.org/10.1002/j.1551-8833.1936.tb13785.x
* Lothenbach, B., Ochs, M., Wanner, H., & Mikazu, Y. (1999). Thermodynamic Date for the Speciation and Solubility of Pd, Pb, Sn, Sb, Nb and Bi in Aqueous Solution.
* Merrill, D. T., & Sanks, R. L. (1977b). Corrosion Control by Deposition of CaC03 Films: Part 1, A Practical Approach for Plant Operators. Journal AWWA, 69(11), 592–599. https://doi.org/10.1002/j.1551-8833.1977.tb06828.x
* Merrill, D. T., & Sanks, R. L. (1978). Corrosion Control by Deposition of CaCO 3 Films: Part 3, A Practical Approach for Plant Operators . Journal AWWA, 70(1), 12–18. https://doi.org/10.1002/j.1551-8833.1978.tb06858.x
* Patterson, K. Y., Pehrsson, P. R., & Perry, C. R. (2013). The mineral content of tap water in United States households. Journal of Food Composition and Analysis, 31(1), 46–50. https://doi.org/10.1016/j.jfca.2013.03.004
* Plummer, L. N., & Busenberg, E. (1982). The Solubilities of Calcite Aragonite and Vaterite in CO2-H2O Solutions between 0 and 90 Degrees C, and an Evaluation of the Aqueous Model for the System CaCO3-CO2-H2O. Geochimica et Cosmochimica Acta, 46, 1011–1040. https://doi.org/10.1016/0016-7037(82)90056-4
* Ryznar, J. W. (1944). A New Index for Determining Amount of Calcium Carbonate Scale Formed by a Water. Journal AWWA, 36(4), 472–483. https://doi.org/10.1002/j.1551-8833.1944.tb20016.x
* Samson, C. C. (2016a). Modeling Relationships between Climate, Source Water Quality and Disinfection Byproduct Formation and Speciation in Treated Drinking Water.
* Samson, C. C., Seidel, C. J., Summers, R. S., & Bartrand, T. (2017). Assessment of HAA9 occurrence and THM, HAA speciation in the United States. In Journal - American Water Works Association (Vol. 109, Issue 7, pp. E288–E301). American Water Works Association. https://doi.org/10.5942/jawwa.2017.109.0083
* Schock, M. R., Wagner, I., & Oliphant, R. J. (1996). Chapter 4 - Corrosion and Solubility of Lead in Drinking Water. In Internal Corrosion of Water Distribution Systems (2nd ed.). American Water Works Association.
* Sohn, J., Amy, G., Cho, J., Lee, Y., & Yoon, Y. (2004). Disinfectant decay and disinfection by-products formation model development: Chlorination and ozonation by-products. Water Research, 38(10), 2461–2478. https://doi.org/10.1016/j.watres.2004.03.009
* U.S. EPA. (1980). 40 CFR Part 141, Interim Primary Drinking Water Regulations; Amendments. Federal Register, 45(168), 57332–57357.