-
Notifications
You must be signed in to change notification settings - Fork 7
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
24 additions
and
44 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,52 +1,32 @@ | ||
import GENetLib | ||
from GENetLib.sim_data_scalar import sim_data_scalar | ||
scalar_survival_linear = sim_data_scalar(rho_G = 0.25, rho_E = 0.3, dim_G = 500, dim_E = 5, n = 1500, dim_E_Sparse = 2, ytype = 'Survival', n_inter = 30) | ||
scalar_survival_linear_data = scalar_survival_linear[0] | ||
scalar_survival_linear_inter = scalar_survival_linear[1] | ||
from GENetLib.sim_data_func import sim_data_func | ||
from GENetLib.func_ge import func_ge | ||
from GENetLib.grid_func_ge import grid_func_ge | ||
|
||
|
||
from GENetLib.sim_data_func import sim_data_func | ||
func_continuous = sim_data_func(n = 1000, m = 100, ytype = 'Continuous', seed = 1) | ||
x = func_continuous['X'] | ||
y = func_continuous['y'] | ||
z = func_continuous['z'] | ||
location = func_continuous['location'] | ||
def test_sim_data_scalar(): | ||
scalar_survival_linear = sim_data_scalar(rho_G=0.25, rho_E=0.3, dim_G=500, dim_E=5, n=1500, dim_E_Sparse=2, ytype='Survival', n_inter=30) | ||
assert scalar_survival_linear[0] is not None | ||
assert scalar_survival_linear[1] is not None | ||
|
||
|
||
from GENetLib.sim_data_func import sim_data_func | ||
from GENetLib.func_ge import func_ge | ||
num_hidden_layers = 2 | ||
nodes_hidden_layer = [100,10] | ||
Learning_Rate2 = 0.035 | ||
L2 = 0.01 | ||
Learning_Rate1 = 0.02 | ||
L = 0.01 | ||
Num_Epochs = 50 | ||
nbasis1 = 5 | ||
params1 = 4 | ||
func_continuous = sim_data_func(n = 1500, m = 30, ytype = 'Continuous', seed = 123) | ||
y = func_continuous['y'] | ||
z = func_continuous['z'] | ||
location = func_continuous['location'] | ||
X = func_continuous['X'] | ||
func_ge_res = func_ge(y, z, location, X, 'Continuous', 'Bspline', num_hidden_layers, nodes_hidden_layer, Learning_Rate2, L2, Learning_Rate1, L, Num_Epochs, nbasis1, params1, Bsplines = 5, norder1 = 4, model = None, split_type = 1, ratio = [3, 1, 1], plot_res = True) | ||
def test_sim_data_func_and_func_ge(): | ||
func_continuous = sim_data_func(n=1500, m=30, ytype='Continuous', seed=123) | ||
assert func_continuous['X'] is not None | ||
assert func_continuous['y'] is not None | ||
assert func_continuous['z'] is not None | ||
assert func_continuous['location'] is not None | ||
|
||
func_ge_res = func_ge(func_continuous['y'], func_continuous['z'], func_continuous['location'], func_continuous['X'], 'Continuous', 'Bspline', num_hidden_layers=2, nodes_hidden_layer=[100,10], Learning_Rate2=0.035, L2=0.01, Learning_Rate1=0.02, L=0.01, Num_Epochs=50, nbasis1=5, params1=4, Bsplines=5, norder1=4, model=None, split_type=1, ratio=[3, 1, 1], plot_res=True) | ||
assert func_ge_res is not None | ||
|
||
from GENetLib.sim_data_func import sim_data_func | ||
from GENetLib.grid_func_ge import grid_func_ge | ||
num_hidden_layers = 2 | ||
nodes_hidden_layer = [100, 10] | ||
Learning_Rate2 = [0.008, 0.009, 0.01] | ||
L2 = [0.002, 0.003, 0.004, 0.005, 0.006] | ||
Learning_Rate1 = [0.02, 0.03, 0.04, 0.05] | ||
L = [0.05, 0.06, 0.07, 0.08] | ||
Num_Epochs = 100 | ||
nbasis1 = 7 | ||
params1 = 4 | ||
func_continuous = sim_data_func(n = 1000, m = 100, ytype = 'Continuous', seed = 1) | ||
y = func_continuous['y'] | ||
z = func_continuous['z'] | ||
location = func_continuous['location'] | ||
X = func_continuous['X'] | ||
grid_func_ge_res = grid_func_ge(y, z, location, X, 'Continuous', 'Bspline', num_hidden_layers, nodes_hidden_layer, Learning_Rate2, L2, Learning_Rate1, L, Num_Epochs, nbasis1, params1, Bsplines = 15, norder1 = 4, model = None, split_type = 0, ratio = [7,3], plot_res = True) | ||
|
||
def test_grid_func_ge(): | ||
func_continuous = sim_data_func(n=1000, m=100, ytype='Continuous', seed=1) | ||
assert func_continuous['X'] is not None | ||
assert func_continuous['y'] is not None | ||
assert func_continuous['z'] is not None | ||
assert func_continuous['location'] is not None | ||
|
||
grid_func_ge_res = grid_func_ge(func_continuous['y'], func_continuous['z'], func_continuous['location'], func_continuous['X'], 'Continuous', 'Bspline', num_hidden_layers=2, nodes_hidden_layer=[100, 10], Learning_Rate2=[0.008, 0.009, 0.01], L2=[0.002, 0.003, 0.004, 0.005, 0.006], Learning_Rate1=[0.02, 0.03, 0.04, 0.05], L=[0.05, 0.06, 0.07, 0.08], Num_Epochs=100, nbasis1=7, params1=4, Bsplines=15, norder1=4, model=None, split_type=0, ratio=[7,3], plot_res=True) | ||
assert grid_func_ge_res is not None |