Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

FEAT: add support for local model checkpoints and trust_remote_code in HuggingFaceChatTarget #574

Open
wants to merge 2 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
90 changes: 63 additions & 27 deletions pyrit/prompt_target/hugging_face/hugging_face_chat_target.py
Original file line number Diff line number Diff line change
Expand Up @@ -38,7 +38,8 @@ class HuggingFaceChatTarget(PromptChatTarget):
def __init__(
self,
*,
model_id: str,
model_id: Optional[str] = None,
model_path: Optional[str] = None,
hf_access_token: Optional[str] = None,
use_cuda: bool = False,
tensor_format: str = "pt",
Expand All @@ -47,16 +48,26 @@ def __init__(
temperature: float = 1.0,
top_p: float = 1.0,
skip_special_tokens: bool = True,
trust_remote_code: bool = False,
) -> None:
super().__init__()

if (model_id is None) == (model_path is None):
raise ValueError("Provide exactly one of `model_id` or `model_path`.")

self.model_id = model_id
self.model_path = model_path
self.use_cuda = use_cuda
self.tensor_format = tensor_format
self.trust_remote_code = trust_remote_code

# Use the `get_required_value` to get the API key (from env or passed value)
self.huggingface_token = default_values.get_required_value(
env_var_name=self.HUGGINGFACE_TOKEN_ENVIRONMENT_VARIABLE, passed_value=hf_access_token
# Only get the Hugging Face token if a model ID is provided
self.huggingface_token = (
default_values.get_required_value(
env_var_name=self.HUGGINGFACE_TOKEN_ENVIRONMENT_VARIABLE, passed_value=hf_access_token
)
if model_id
else None
)

try:
Expand Down Expand Up @@ -106,46 +117,69 @@ async def load_model_and_tokenizer(self):
Exception: If the model loading fails.
"""
try:
# Define the default Hugging Face cache directory
cache_dir = os.path.join(
os.path.expanduser("~"), ".cache", "huggingface", "hub", f"models--{self.model_id.replace('/', '--')}"
)
# Determine the identifier for caching purposes
model_identifier = self.model_path or self.model_id

# Check if the model is already cached
if HuggingFaceChatTarget._cache_enabled and HuggingFaceChatTarget._cached_model_id == self.model_id:
logger.info(f"Using cached model and tokenizer for {self.model_id}.")
if HuggingFaceChatTarget._cache_enabled and HuggingFaceChatTarget._cached_model_id == model_identifier:
logger.info(f"Using cached model and tokenizer for {model_identifier}.")
self.model = HuggingFaceChatTarget._cached_model
self.tokenizer = HuggingFaceChatTarget._cached_tokenizer
return

if self.necessary_files is None:
# Download all files if no specific files are provided
logger.info(f"Downloading all files for {self.model_id}...")
await download_specific_files(self.model_id, None, self.huggingface_token, cache_dir)
if self.model_path:
# Load the tokenizer and model from the local directory
logger.info(f"Loading model from local path: {self.model_path}...")
self.tokenizer = AutoTokenizer.from_pretrained(
self.model_path, trust_remote_code=self.trust_remote_code
)
self.model = AutoModelForCausalLM.from_pretrained(
self.model_path, trust_remote_code=self.trust_remote_code
)
else:
# Download only the necessary files
logger.info(f"Downloading specific files for {self.model_id}...")
await download_specific_files(self.model_id, self.necessary_files, self.huggingface_token, cache_dir)

# Load the tokenizer and model from the specified directory
logger.info(f"Loading model {self.model_id} from cache path: {cache_dir}...")
self.tokenizer = AutoTokenizer.from_pretrained(self.model_id, cache_dir=cache_dir)
self.model = AutoModelForCausalLM.from_pretrained(self.model_id, cache_dir=cache_dir)
# Define the default Hugging Face cache directory
cache_dir = os.path.join(
os.path.expanduser("~"),
".cache",
"huggingface",
"hub",
f"models--{self.model_id.replace('/', '--')}",
)

if self.necessary_files is None:
# Download all files if no specific files are provided
logger.info(f"Downloading all files for {self.model_id}...")
await download_specific_files(self.model_id, None, self.huggingface_token, cache_dir)
else:
# Download only the necessary files
logger.info(f"Downloading specific files for {self.model_id}...")
await download_specific_files(
self.model_id, self.necessary_files, self.huggingface_token, cache_dir
)

# Load the tokenizer and model from the specified directory
logger.info(f"Loading model {self.model_id} from cache path: {cache_dir}...")
self.tokenizer = AutoTokenizer.from_pretrained(
self.model_id, cache_dir=cache_dir, trust_remote_code=self.trust_remote_code
)
self.model = AutoModelForCausalLM.from_pretrained(
self.model_id, cache_dir=cache_dir, trust_remote_code=self.trust_remote_code
)

# Move the model to the correct device
self.model = self.model.to(self.device)

# Debug prints to check types
logger.info(f"Model loaded: {type(self.model)}") # Debug print
logger.info(f"Tokenizer loaded: {type(self.tokenizer)}") # Debug print
logger.info(f"Model loaded: {type(self.model)}")
logger.info(f"Tokenizer loaded: {type(self.tokenizer)}")

# Cache the loaded model and tokenizer if caching is enabled
if HuggingFaceChatTarget._cache_enabled:
HuggingFaceChatTarget._cached_model = self.model
HuggingFaceChatTarget._cached_tokenizer = self.tokenizer
HuggingFaceChatTarget._cached_model_id = self.model_id
HuggingFaceChatTarget._cached_model_id = model_identifier

logger.info(f"Model {self.model_id} loaded successfully.")
logger.info(f"Model {model_identifier} loaded successfully.")

except Exception as e:
logger.error(f"Error loading model {self.model_id}: {e}")
Expand Down Expand Up @@ -207,10 +241,12 @@ async def send_prompt_async(self, *, prompt_request: PromptRequestResponse) -> P

logger.info(f"Assistant's response: {assistant_response}")

model_identifier = self.model_id or self.model_path

return construct_response_from_request(
request=request,
response_text_pieces=[assistant_response],
prompt_metadata=json.dumps({"model_id": self.model_id}),
prompt_metadata=json.dumps({"model_id": model_identifier}),
)

except Exception as e:
Expand Down
38 changes: 38 additions & 0 deletions tests/target/test_huggingface_chat_target.py
Original file line number Diff line number Diff line change
Expand Up @@ -225,3 +225,41 @@ def test_enable_disable_cache():
assert HuggingFaceChatTarget._cached_model is None
assert HuggingFaceChatTarget._cached_tokenizer is None
assert HuggingFaceChatTarget._cached_model_id is None


@pytest.mark.skipif(not is_torch_installed(), reason="torch is not installed")
@pytest.mark.asyncio
async def test_load_model_with_model_path():
"""Test loading a model from a local directory (`model_path`)."""
model_path = "./mock_local_model_path"
hf_chat = HuggingFaceChatTarget(model_path=model_path, use_cuda=False, trust_remote_code=False)
await hf_chat.load_model_and_tokenizer()
assert hf_chat.model is not None
assert hf_chat.tokenizer is not None


@pytest.mark.skipif(not is_torch_installed(), reason="torch is not installed")
@pytest.mark.asyncio
async def test_load_model_with_trust_remote_code():
"""Test loading a remote model requiring `trust_remote_code=True`."""
model_id = "mock_remote_model"
hf_chat = HuggingFaceChatTarget(model_id=model_id, use_cuda=False, trust_remote_code=True)
await hf_chat.load_model_and_tokenizer()
assert hf_chat.model is not None
assert hf_chat.tokenizer is not None


@pytest.mark.skipif(not is_torch_installed(), reason="torch is not installed")
def test_init_with_both_model_id_and_model_path_raises():
"""Ensure providing both `model_id` and `model_path` raises an error."""
with pytest.raises(ValueError) as excinfo:
HuggingFaceChatTarget(model_id="test_model", model_path="./mock_local_model_path", use_cuda=False)
assert "Provide exactly one of `model_id` or `model_path`." in str(excinfo.value)


@pytest.mark.skipif(not is_torch_installed(), reason="torch is not installed")
def test_load_model_without_model_id_or_path():
"""Ensure initializing without `model_id` or `model_path` raises an error."""
with pytest.raises(ValueError) as excinfo:
HuggingFaceChatTarget(use_cuda=False)
assert "Provide exactly one of `model_id` or `model_path`." in str(excinfo.value)