Skip to content

Commit

Permalink
Initial commit to RFdiffusion
Browse files Browse the repository at this point in the history
  • Loading branch information
Joseph Watson committed Mar 30, 2023
0 parents commit 4c62149
Show file tree
Hide file tree
Showing 108 changed files with 38,150 additions and 0 deletions.
404 changes: 404 additions & 0 deletions Attention_module.py

Large diffs are not rendered by default.

92 changes: 92 additions & 0 deletions AuxiliaryPredictor.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,92 @@
import torch
import torch.nn as nn

class DistanceNetwork(nn.Module):
def __init__(self, n_feat, p_drop=0.1):
super(DistanceNetwork, self).__init__()
#
self.proj_symm = nn.Linear(n_feat, 37*2)
self.proj_asymm = nn.Linear(n_feat, 37+19)

self.reset_parameter()

def reset_parameter(self):
# initialize linear layer for final logit prediction
nn.init.zeros_(self.proj_symm.weight)
nn.init.zeros_(self.proj_asymm.weight)
nn.init.zeros_(self.proj_symm.bias)
nn.init.zeros_(self.proj_asymm.bias)

def forward(self, x):
# input: pair info (B, L, L, C)

# predict theta, phi (non-symmetric)
logits_asymm = self.proj_asymm(x)
logits_theta = logits_asymm[:,:,:,:37].permute(0,3,1,2)
logits_phi = logits_asymm[:,:,:,37:].permute(0,3,1,2)

# predict dist, omega
logits_symm = self.proj_symm(x)
logits_symm = logits_symm + logits_symm.permute(0,2,1,3)
logits_dist = logits_symm[:,:,:,:37].permute(0,3,1,2)
logits_omega = logits_symm[:,:,:,37:].permute(0,3,1,2)

return logits_dist, logits_omega, logits_theta, logits_phi

class MaskedTokenNetwork(nn.Module):
def __init__(self, n_feat, p_drop=0.1):
super(MaskedTokenNetwork, self).__init__()
self.proj = nn.Linear(n_feat, 21)

self.reset_parameter()

def reset_parameter(self):
nn.init.zeros_(self.proj.weight)
nn.init.zeros_(self.proj.bias)

def forward(self, x):
B, N, L = x.shape[:3]
logits = self.proj(x).permute(0,3,1,2).reshape(B, -1, N*L)

return logits

class LDDTNetwork(nn.Module):
def __init__(self, n_feat, n_bin_lddt=50):
super(LDDTNetwork, self).__init__()
self.proj = nn.Linear(n_feat, n_bin_lddt)

self.reset_parameter()

def reset_parameter(self):
nn.init.zeros_(self.proj.weight)
nn.init.zeros_(self.proj.bias)

def forward(self, x):
logits = self.proj(x) # (B, L, 50)

return logits.permute(0,2,1)

class ExpResolvedNetwork(nn.Module):
def __init__(self, d_msa, d_state, p_drop=0.1):
super(ExpResolvedNetwork, self).__init__()
self.norm_msa = nn.LayerNorm(d_msa)
self.norm_state = nn.LayerNorm(d_state)
self.proj = nn.Linear(d_msa+d_state, 1)

self.reset_parameter()

def reset_parameter(self):
nn.init.zeros_(self.proj.weight)
nn.init.zeros_(self.proj.bias)

def forward(self, seq, state):
B, L = seq.shape[:2]

seq = self.norm_msa(seq)
state = self.norm_state(state)
feat = torch.cat((seq, state), dim=-1)
logits = self.proj(feat)
return logits.reshape(B, L)



Loading

0 comments on commit 4c62149

Please sign in to comment.