Chasing Day and Night: Towards Robust and Efficient All-Day Object Detection Guided by an Event Camera (ICRA'24)
Jiahang Cao, Xu Zheng, Yuanhuiyi Lyu, Jiaxu Wang, Renjing Xu†, Lin Wang†
HKUST(GZ) & HKUST
- (Optional) Creating conda environment.
conda create -n EOLO
conda activate EOLO
- Installing dependencies.
git clone https://github.com/AndyCao1125/EOLO.git
cd EOLO
pip install -r requirements.txt
[Update August.5th] The checkpoint of EOLO in under-exposure scene in VOC is now released. You can download the checkpoint through this link
Codes for training EOLO:
CUDA_VISIBLE_DEVICES=0 python train_eyolo.py \
-d voc \
--cuda \
-m E-yolo-tiny \
--ema \
--num_gpu 1 \
--batch_size 32 \
--root path/to/dataset/\
--lr 0.0005 \
--img_size 320 \
--max_epoch 50 \
--lr_epoch 30 40 \
--save_name EOLO-tiny_VOC_Underexposure_0.2_random42_1gpu_32bs_50epoch_SREF\
--img_size 320\
--data_type Exposure_Event\
--exposure_factor Underexposure_0.2_random42\
--fusion_method SREF\
--use_wandb
# Please specify a directory for dataset to be downloaded into, else default is ~/data/
sh data/scripts/VOC2007.sh
sh data/scripts/VOC2012.sh
To obtain paired event data, we propose a novel event frame synthesis method that generates event frames by the randomized optical flow and luminance gradients. Only a single RGB/HDR image is required to generate the corresponding event frames.
You can easily generate E-VOC dataset by
python event2frame.py
The resulting dataset will have the following data structure:
VOC2007
|---Event ## Raw Event (.npy)
|---{event_type}, e.g.,'Underexposure_0.2_random42'
|---XXXX.npy
|...
|---EventFrameImages ## Event Frame (.jpg)
|---{event_type}
|---XXXX.jpg
|...
|---ExposureImages ## Exposure RGB image for visulization (.jpg), clip into [0,255] from HDR image
|---{event_type}
|---XXXX.jpg
|...
|---HDRImages ## Exposure Images (.exr)
|---{event_type}
|---XXXX.exr
|...
|---Annotations
|---JPEGImages
|---ImageSets
|---SegmentationClass
|---SegmentationObject
where the Event, EventFrameImages, ExposureImages and HDRImages are newly generated. Please remember, you need to first download the original VOC dataset before this step.
If you find our work useful, please consider citing:
@article{cao2023chasing,
title={Chasing Day and Night: Towards Robust and Efficient All-Day Object Detection Guided by an Event Camera},
author={Cao, Jiahang and Zheng, Xu and Lyu, Yuanhuiyi and Wang, Jiaxu and Xu, Renjing and Wang, Lin},
journal={arXiv preprint arXiv:2309.09297},
year={2023}
}
We thank the authors (PyTorch_YOLO-Family) for their open-sourced codes.
For any help or issues of this project, please contact [email protected].