Skip to content

[ICRA 2024] Chasing Day and Night: Towards Robust and Efficient All-Day Object Detection by an Event Camera

Notifications You must be signed in to change notification settings

AndyCao1125/EOLO

Repository files navigation


Chasing Day and Night: Towards Robust and Efficient All-Day Object Detection Guided by an Event Camera (ICRA'24)

Jiahang Cao, Xu Zheng, Yuanhuiyi Lyu, Jiaxu Wang, Renjing Xu, Lin Wang

HKUST(GZ) & HKUST

Paper PDF Proceeding Supp

Logo

Requirements

  1. (Optional) Creating conda environment.
conda create -n EOLO
conda activate EOLO
  1. Installing dependencies.
git clone https://github.com/AndyCao1125/EOLO.git
cd EOLO
pip install -r requirements.txt

Training & Testing

[Update August.5th] The checkpoint of EOLO in under-exposure scene in VOC is now released. You can download the checkpoint through this link

Codes for training EOLO:

CUDA_VISIBLE_DEVICES=0 python train_eyolo.py \
     -d voc \
     --cuda \
     -m E-yolo-tiny \
     --ema \
     --num_gpu 1 \
     --batch_size 32 \
     --root path/to/dataset/\
     --lr 0.0005 \
     --img_size 320 \
     --max_epoch 50 \
     --lr_epoch 30 40 \
     --save_name EOLO-tiny_VOC_Underexposure_0.2_random42_1gpu_32bs_50epoch_SREF\
     --img_size 320\
     --data_type Exposure_Event\
     --exposure_factor Underexposure_0.2_random42\
     --fusion_method SREF\
     --use_wandb   

Dataset Preparation

Download VOC 2007 & 2012 dataset

# Please specify a directory for dataset to be downloaded into, else default is ~/data/
sh data/scripts/VOC2007.sh
sh data/scripts/VOC2012.sh

Event-based Dataset Generation

Logo

To obtain paired event data, we propose a novel event frame synthesis method that generates event frames by the randomized optical flow and luminance gradients. Only a single RGB/HDR image is required to generate the corresponding event frames.

You can easily generate E-VOC dataset by

python event2frame.py

The resulting dataset will have the following data structure:

VOC2007
|---Event                      ## Raw Event (.npy)
   |---{event_type}, e.g.,'Underexposure_0.2_random42'
       |---XXXX.npy
       |...
|---EventFrameImages           ## Event Frame (.jpg)
    |---{event_type}
       |---XXXX.jpg
       |...
|---ExposureImages             ## Exposure RGB image for visulization (.jpg), clip into [0,255] from HDR image
    |---{event_type}
       |---XXXX.jpg
       |...
|---HDRImages                  ## Exposure Images (.exr)
    |---{event_type}
       |---XXXX.exr
       |...
|---Annotations                
|---JPEGImages
|---ImageSets
|---SegmentationClass
|---SegmentationObject

where the Event, EventFrameImages, ExposureImages and HDRImages are newly generated. Please remember, you need to first download the original VOC dataset before this step.

Citation

If you find our work useful, please consider citing:

@article{cao2023chasing,
  title={Chasing Day and Night: Towards Robust and Efficient All-Day Object Detection Guided by an Event Camera},
  author={Cao, Jiahang and Zheng, Xu and Lyu, Yuanhuiyi and Wang, Jiaxu and Xu, Renjing and Wang, Lin},
  journal={arXiv preprint arXiv:2309.09297},
  year={2023}
}

Acknowledgements & Contact

We thank the authors (PyTorch_YOLO-Family) for their open-sourced codes.

For any help or issues of this project, please contact [email protected].

About

[ICRA 2024] Chasing Day and Night: Towards Robust and Efficient All-Day Object Detection by an Event Camera

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published