Skip to content

AmitThakur/reinforcement-learning-practice

Repository files navigation

Reinforcement-Learning-Practice

Practice code from Reinforcement Learning

Available algorithms

  • Policy Iteration from MDP
    • policy_iteration
  • Value Iteration from MDP
    • value_iteration
  • Monte Carlo Prediction
    • First Visit-MC
    • Every Visit-MC
  • Temporal Difference
  • N-Step Temporal Difference
  • Temporal Difference-Lambda
  • SARSA
  • Q-Learning

Available Utils

  • common_utils:
    • plot_policy
    • plot_state_value_function
    • evaluate_policy
    • improve_policy
    • probability_success
    • mean_return
    • print_policy_success_stats
    • generate_random_policy
    • rmse
    • decay_schedule
    • generate_trajectory
    • generate_trajectory_epsilon_greedy
    • print_action_value_function
    • get_policy_metrics
    • moving_average
    • choose_epsilon_greedy_action

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published