Skip to content

Commit

Permalink
Add Burger's Equation Decapode
Browse files Browse the repository at this point in the history
  • Loading branch information
lukem12345 committed Sep 1, 2023
1 parent 670a74e commit cbb91dc
Showing 1 changed file with 135 additions and 0 deletions.
135 changes: 135 additions & 0 deletions examples/diff_adv/burger.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,135 @@
# AlgebraicJulia Dependencies
using Decapodes
using Catlab
using CombinatorialSpaces

# External Dependencies
using Logging: global_logger
using TerminalLoggers: TerminalLogger
global_logger(TerminalLogger())
using GeometryBasics: Point2
Point2D = Point2{Float64}
using Distributions
using GLMakie
using LinearAlgebra
using MLStyle
using MultiScaleArrays
using OrdinaryDiffEq

# Represent component Decapodes.
Diffusion = @decapode begin
C::Form0
ϕ::Form1
ν::Constant

# Fick's first law
ϕ == ν * d(C)
end

Advection = @decapode begin
C::Form0
(V, ϕ)::Form1

ϕ == (C,V)
end

Lie = @decapode begin
C::Form0
V::Form1
dX::Form1

V == (,)(C dX)
end

Superposition = @decapode begin
(C, Ċ)::Form0
(ϕ, ϕ₁, ϕ₂)::Form1

ϕ == ϕ₁ + ϕ₂
== (,d,)(ϕ)
∂ₜ(C) ==
end

# Compose physics.
compose_burger = @relation () begin
diffusion(C, ϕ₁)
advection(C, ϕ₂, V)
lie(C, V)
superposition(ϕ₁, ϕ₂, ϕ, C)
end

to_graphviz(compose_burger, box_labels=:name, junction_labels=:variable, prog="circo")

Burger_cospan = oapply(compose_burger,
[Open(Diffusion, [:C, ]),
Open(Advection, [:C, , :V]),
Open(Lie, [:C, :V]),
Open(Superposition, [:ϕ₁, :ϕ₂, , :C])])
Burger = apex(Burger_cospan)

# Specify semantics of the 1D DEC.
# i.e. Declare these dynamics are happening on a line.
Burger = expand_operators(Burger)
infer_types!(Burger, op1_inf_rules_1D, op2_inf_rules_1D)
resolve_overloads!(Burger, op1_res_rules_1D, op2_res_rules_1D)

to_graphviz(Burger)

# Create mesh.
# This is a line. This could be a helper function.
s = EmbeddedDeltaSet1D{Bool, Point2D}()
add_vertices!(s, 1000, point=Point2D.(1:1000,0))
add_edges!(s, 1:(nv(s)-1), 2:nv(s))
sd = EmbeddedDeltaDualComplex1D{Bool, Float64, Point2D}(s)
subdivide_duals!(sd, Circumcenter())

# Set initial conditions and constants.
c_dist = MvNormal([500, 5], [10.5, 10.5])
c = [pdf(c_dist, [p[1], p[2]]) for p in point(sd)]
dX = ones(ne(sd))

u₀ = construct(PhysicsState, [VectorForm(c), VectorForm(dX)], Float64[], [:C, :lie_dX])

cs_ps = (diffusion_ν = 0.0005,)

# Describe mappings from symbols to discrete differential operators.
function generate(sd, my_symbol; hodge=DiagonalHodge())
op = @match my_symbol begin
# Specify which wedge product to use.
# This should probably be the default.
:₀₁ => (x,y) -> begin
(Tuple{0,1},sd,x,y)
end
x => error("Unmatched operator $my_symbol")
end
return (args...) -> op(args...)
end

# Generate simulation.
sim = eval(gensim(Burger, dimension=1))
fₘ = sim(sd, generate, DiagonalHodge())

# Run simulation.
tₑ = 1e5
prob = ODEProblem(fₘ, u₀, (0.0, tₑ), cs_ps)
sol = solve(prob, Tsit5(), progress=true, progress_steps=1)

# Visualize initial and final conditions.
lines(map(x -> x[1], point(sd)), findnode(sol(0.0), :C))
lines!(map(x -> x[1], point(sd)), findnode(sol(tₑ), :C))

# Animate the dynamics.
times = range(0.0, tₑ, length=150)
colors = [findnode(sol(t), :C) for t in times]

frames = 100
fig = Figure(resolution = (800, 800))
ax1 = Axis(fig[1,1])
xlims!(ax1, extrema(map(x -> x[1], point(sd))))
ylims!(ax1, extrema(findnode(sol(0.0), :C)))
Label(fig[1,1,Top()], "Speed C")
Label(fig[2,1,Top()], "Line plot of speed of fluid along the linear domain, every $(tₑ/frames) time units")

record(fig, "burger_low_diff.gif", range(0.0, tₑ; length=frames); framerate = 15) do t
lines!(fig[1,1], map(x -> x[1], point(sd)), findnode(sol(t), :C))
end

0 comments on commit cbb91dc

Please sign in to comment.