Skip to content

Commit

Permalink
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
some work modeling Gillespie's DEC implementation of MHD
Browse files Browse the repository at this point in the history
quffaro committed Sep 30, 2024
1 parent fc8b463 commit 29eb892
Showing 1 changed file with 20 additions and 16 deletions.
36 changes: 20 additions & 16 deletions examples/mhd.jl
Original file line number Diff line number Diff line change
@@ -32,7 +32,7 @@ using MLStyle
using Statistics: mean

@info "Defining models"
mhd = @decapode begin
_mhd = @decapode begin
ψ::Form0
η::DualForm1
(dη,β)::DualForm2
@@ -44,6 +44,18 @@ mhd = @decapode begin
η == (d(ψ))
end;

mhd = @decapode begin
ψ::Form0
(η,β)::DualForm1
::DualForm2
# δ = ⋆d⋆ # TODO Luke make primal-dual 1, 0
∂ₜ(dη) == -1*((₁, dual_d₁)(((dη) ₀₁ ♭♯(η)) + (♭♯((β)) ᵈᵈ₁₀ (, d, )(β))))
∂ₜ(β) == -1*((₂, dual_d₀)((β) ᵖᵈ₁₁ η))
# solve for stream function
ψ == (, Δ⁻¹)(dη)
η == (d(ψ))
end;

@info "Allocating Mesh and Operators"
const RADIUS = 1.0;
sphere = :ICO7;
@@ -109,7 +121,6 @@ begin # ICs
@info "Setting Initial Conditions"

""" function great_circle_dist(pnt,G,a,cntr)
Compute the length of the shortest path along a sphere, given Cartesian coordinates.
"""
function great_circle_dist(pnt1::Point3D, pnt2::Point3D)
@@ -129,7 +140,6 @@ struct PointVortexParams <: AbstractVortexParams
end

""" function taylor_vortex(pnt::Point3D, cntr::Point3D, p::TaylorVortexParams)
Compute the value of a Taylor vortex at the given point.
"""
function taylor_vortex(pnt::Point3D, cntr::Point3D, p::TaylorVortexParams)
@@ -138,7 +148,6 @@ function taylor_vortex(pnt::Point3D, cntr::Point3D, p::TaylorVortexParams)
end

""" function point_vortex(pnt::Point3D, cntr::Point3D, p::PointVortexParams)
Compute the value of a smoothed point vortex at the given point.
"""
function point_vortex(pnt::Point3D, cntr::Point3D, p::PointVortexParams)
@@ -152,7 +161,6 @@ point_vortex(sd::HasDeltaSet, cntr::Point3D, p::PointVortexParams) =
map(x -> point_vortex(x, cntr, p), point(sd))

""" function ring_centers(lat, n)
Find n equispaced points at the given latitude.
"""
function ring_centers(lat, n)
@@ -165,21 +173,16 @@ function ring_centers(lat, n)
end

""" function vort_ring(lat, n_vorts, p::T, formula) where {T<:AbstractVortexParams}
Compute vorticity as primal 0-forms for a ring of vortices.
Specify the latitude, number of vortices, and a formula for computing vortex strength centered at a point.
"""
function vort_ring(lat, n_vorts, p::T, formula) where {T<:AbstractVortexParams}
sum(map(x -> formula(sd, x, p), ring_centers(lat, n_vorts)))
end

""" function vort_ring(lat, n_vorts, p::PointVortexParams, formula)
Compute vorticity as primal 0-forms for a ring of vortices.
Specify the latitude, number of vortices, and a formula for computing vortex strength centered at a point.
Additionally, place a counter-balance vortex at the South Pole such that the integral of vorticity is 0.
"""
function vort_ring(lat, n_vorts, p::PointVortexParams, formula)
@@ -194,7 +197,6 @@ X = # Six equidistant points at latitude θ=0.4.
vort_ring(0.4, 6, PointVortexParams(3.0, 0.15), point_vortex)

""" function solve_poisson(vort::VForm)
Compute the stream function by solving the Poisson equation.
"""
function solve_poisson(vort::VForm)
@@ -216,11 +218,13 @@ integral_of_curl(curl::DualForm{2}) = sum(curl.data)
# i.e. (sum ∘ ⋆₀) computes a Riemann sum.
integral_of_curl(curl::VForm) = integral_of_curl(DualForm{2}(s0*curl.data))

vort_ring(0.4, 6, PointVortexParams(3.0, 0.15), point_vortex)
u₀ = ComponentArray(dη = s0*X, β = s0*X)
# X is a primal 0,
vort_ring(0.4, 6, PointVortexParams(3.0, 0.15), point_vortex)
u₀ = ComponentArray(dη = s0*X, β = 1e-9*s1*d0*X)

constants_and_parameters = (
μ = 0.001,)
# TODO Units are probably heinous for u₀

@info "RMS of divergence of initial velocity: $((RMS, div, curl_stream)(ψ))"
@info "Integral of initial curl: $(integral_of_curl(VForm(X)))"
@@ -243,12 +247,12 @@ end # ICs
# u₀ = ComponentArray(dη = dual2, β = β, );

@info("Solving")
tₑ = 10.0;
tₑ = 1.0;

prob = ODEProblem(f, u₀, (0, tₑ), constants_and_parameters)
soln = solve(prob,
Tsit5(),
dtmax = 0.01,
dtmax = 1e-3,
dense=false,
progress=true, progress_steps=1);

@@ -265,5 +269,5 @@ function save_gif(file_name, soln)
time[] = t
end
end
save_gif("vid2.mp4", soln)
save_gif("vid3.mp4", soln)

0 comments on commit 29eb892

Please sign in to comment.