Skip to content

AIOSYM/dl-model-gallery

Repository files navigation

Deep Learning Model Gallery

Implementation of various popular Deep Learning models and architectures.

LeNet

Paper: [Gradient-based learning applied to document recognition] (http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf) (1998)

LeNet or LeNet-5 (because it has 5 layers that contain parameters) is the most basic form of Convolutional Neural Network (CNN) architecture. It was first used for handwritten digit recognition (MNIST dataset)

Architecture Summary LeNet Architecture

Layer Kernel Size Number of Filter Stride Padding Activation Function Output Size
Input 32 x 32 x 3
Convolution 5 x 5 6 1 0 - 28 x 28 x 6
Maxpool 2 x 2 - 2 0 sigmoid 14 x 14 x 6
Convolution 5 x 5 16 1 0 - 10 x 10 x 16
Maxpool 2 x 2 - 2 0 sigmoid 5 x 5 x 16
Fully Connected 120 - - - - 120
Fully Connected 84 - - - - 84
Fully Connected 10 (classes) - - - softmax 10
Framework PyTorch TensorFlow
Implemented ☑️

AlexNet

Paper: [ImageNet Classification with Deep Convolutional Neural Networks] (https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf) (2012)

AlexNet competed in the ImageNet Large Scale Visual Recognition Challenge and achieved a top-5 error of 15.3%. This model has made the name of Deep Learning as well known as today. Also, there is a special layer called LocalResponseNorm(LRN). However, there are some experiments that proof that LRN does not contribute much.

Architecture Summary

Image source

Note: If you read the original paper, the figure above will be a bit different. Because the author use 2 GPUs for training and the figure illustrate distribution of each layter to those GPUs.

Layer Kernel Size Number of Filter Stride Padding Activation Function Output Size
Input 227 x 227 x 3
Convolution 11 x 11 96 4 0 ReLU 55 x 55 x 96
LocalResponseNorm - - - - - 55 x 55 x 96
MaxPooling 3 x 3 - 2 0 - 27 x 27 x 96
Convolution 5 x 5 256 1 1 ReLU 27 x 27 x 256
LocalResponseNorm - - - - - 27 x 27 x 256
MaxPooling 3 x 3 - 2 0 - 13 x 13 x 256
Convolution 3 x 3 384 1 1 ReLU 13 x 13 x 384
Convolution 3 x 3 384 1 1 ReLU 13 x 13 x 384
Convolution 3 x 3 256 1 1 ReLU 13 x 13 x 256
MaxPooling 3 x 3 - 2 0 - 6 x 6 x 256
Fully Connected 4096 - - - ReLU 4096
Fully Connected 4096 - - - ReLU 4096
Fully Connected 2 (classes) - - - softmax 2
Framework PyTorch TensorFlow
Implemented ☑️

VGG-16

Paper: [Very Deep Convolutional Networks for Large-Scale Image Recognition] (https://arxiv.org/pdf/1409.1556.pdf) (2014)

VGG-16 is a model proposed by the researchers at the University of Oxford. This model uses many convolution layers on top of each other to extract features. VGG-16 here derived from the fact that there are 13 convolution layers and 3 fully connected layers (13+3=16). You might also see VGG-19 as well. So refer to the paper for more detail of the architecture.

Architecture Summary

VGG Architecture

Layer Kernel Size Number of Filter Stride Padding Activation Function Output Size
Input 224 x 224 x 3
Convolution 3 x 3 64 1 1 ReLU 224 x 224 x 64
Convolution 3 x 3 64 1 1 ReLU 224 x 224 x 64
MaxPooling 2 x 2 - 2 0 - 112 x 112 x 64
Convolution 3 x 3 128 1 1 ReLU 112 x 112 x 128
Convolution 3 x 3 128 1 1 ReLU 112 x 112 x 128
MaxPooling 2 x 2 - 2 0 - 56 x 56 x 128
Convolution 3 x 3 256 1 1 ReLU 56 x 56 x 256
Convolution 3 x 3 256 1 1 ReLU 56 x 56 x 256
Convolution 3 x 3 256 1 1 ReLU 56 x 56 x 256
MaxPooling 2 x 2 - 2 0 - 28 x 28 x 256
Convolution 3 x 3 512 1 1 ReLU 28 x 28 x 512
Convolution 3 x 3 512 1 1 ReLU 28 x 28 x 512
Convolution 3 x 3 512 1 1 ReLU 28 x 28 x 512
MaxPooling 2 x 2 - 2 0 - 14 x 14 x 512
Convolution 3 x 3 512 1 1 ReLU 14 x 14 x 512
Convolution 3 x 3 512 1 1 ReLU 14 x 14 x 512
Convolution 3 x 3 512 1 1 ReLU 14 x 14 x 512
MaxPooling 2 x 2 - 2 0 - 7 x 7 x 512
Fully Connected 4096 - - - ReLU 4096
Fully Connected 4096 - - - ReLU 4096
Fully Connected 2 (classes) - - - softmax 2
Framework PyTorch TensorFlow
Implemented ☑️

GoogLeNet

Paper: [Going Deeper with Convolutions] (https://arxiv.org/abs/1409.4842) (2014)

GoogLeNet is a 22 layers deep network and this name is honor to Yann LeCuns pioneering LeNet 5 network. It introduces a new module called Inception.

Architecture Summary

Inception Module

Layer Kernel Size/Stride/Padding #Filter For inception module Activation Function output size
#1x1 #3x3 #5x5 pooling #3x3(reduce) #5x5(reduce)
Input 224x224x3
Convolution 7x7 / 2 / 0 64 - - - - - - ReLU 112x112x64
MaxPool 3x3 / 2 - - - - - - - - 56x56x64
LocalResponseNorm - - - - - - - - - 56x56x64
Convolution 1x1 / 1 / 0 64 - - - - - - ReLU 56x56x64
Convolution 3x3 / 1 / 1 192 - - - - - - ReLU 56x56x192
LocalResponseNorm - - - - - - - - - 56x56x192
MaxPool 3x3 / 2 - - - - - - - - 28x28x192
Inception(3a) - - 64 128 32 32 96 16 - 28x28x256
Inception(3b) - - 128 192 96 64 128 32 - 28x28x480
MaxPool 3x3 / 2 - - - - - - - - 14x14x480
Inception(4a) - - 192 208 48 64 96 16 - 14x14x512
Inception(4b) - - 160 224 64 64 112 24 - 14x14x512
Inception(4c) - - 128 256 64 64 128 24 - 14x14x512
Inception(4d) - - 112 288 64 64 144 32 - 14x14x528
Inception(4e) - - 256 320 128 128 160 32 - 14x14x832
MaxPool 3x3 / 2 - - - - - - - - 7x7x832
Inception(5a) - - - - - - - - - 7x7x832
Inception(5b) - - - - - - - - - 7x7x1024
AvgPool 7x7 / 1 - - - - - - - - 1x1x1024
Dropout (40%) - - - - - - - - - 1x1x1024
Fully Connected 2 (classes) - - - - - - - softmax 1x1x2
Framework PyTorch TensorFlow
Implemented ☑️

About

Implementation of popular Deep Learning model

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages