-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
308 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,308 @@ | ||
|
||
import argparse | ||
import logging | ||
import time | ||
import math | ||
|
||
import pandas as pd | ||
import tensorflow as tf | ||
import numpy as np | ||
|
||
from os import path | ||
from math import sqrt | ||
from numpy.random import seed | ||
from sklearn.metrics import mean_squared_error | ||
|
||
from keras.models import Sequential | ||
from keras.models import load_model | ||
from keras.layers import LSTM | ||
from keras.layers import Dense | ||
from keras.layers import Bidirectional | ||
from keras.optimizers import SGD | ||
|
||
from utils import getFeatures | ||
from utils import getAnomalyColumns | ||
from utils import loadDataset | ||
from utils import saveNormalizationStats | ||
from utils import saveDictJson | ||
from utils import loadDictJson | ||
from utils import normalizeFeature | ||
from utils import split_sequences | ||
from utils import plotMetric | ||
from utils import plotAccLoss | ||
from utils import createEmptyMetricsArray | ||
from utils import convertNumpyToPandas | ||
from utils import printPredictionErrors | ||
|
||
from metrics_formatter import formatCpuSecondsTotal | ||
from metrics_formatter import formatMemoryFreeBytes | ||
from metrics_formatter import formatNetworkBytes | ||
from metrics_formatter import format5gNetworkBytes | ||
from metrics_formatter import format5gCpuPercentage | ||
|
||
from influx_utils import initializeConnection | ||
from influx_utils import checkDatabase | ||
from influx_utils import insertAnomalies | ||
from influx_utils import getLastRecords | ||
|
||
import matplotlib.pyplot as plt | ||
|
||
# Initialization values | ||
seed(101) | ||
tf.random.set_seed(seed=101) | ||
|
||
pd.set_option('display.width', 1920) | ||
pd.set_option('display.max_columns', 100) | ||
pd.set_option('use_inf_as_na', True) | ||
|
||
logging.basicConfig( | ||
filename='5g_anomaly_detection.log', | ||
format='%(asctime)s [%(levelname)-8s] %(message)s', | ||
level=logging.INFO, | ||
datefmt='%Y-%m-%d %H:%M:%S' | ||
) | ||
|
||
logging.getLogger('matplotlib').setLevel(level=logging.CRITICAL) | ||
logging.getLogger("requests").setLevel(logging.CRITICAL) | ||
logging.getLogger("urllib3").setLevel(logging.CRITICAL) | ||
logging.getLogger("PIL.TiffImagePlugin").setLevel(logging.CRITICAL) | ||
|
||
def evaluate(thresholds_file, cpu_testset, iperf_testset, trainset, time_window_threshold): | ||
plt.clf() | ||
|
||
stats_json = data_prefix + 'normalization_stats.json' | ||
|
||
model = load_model('model/5g_autoencoder.h5') | ||
normalization_stats = loadDictJson(stats_json) | ||
|
||
cols_to_normalize = getFeatures() | ||
cols = [c+'_normalized' for c in cols_to_normalize] | ||
|
||
time_window_threshold = 30 | ||
refresh_time_interval = 15 | ||
|
||
n_steps = 4 | ||
n_features = len(cols) | ||
|
||
logging.info('Loading evaluation datasets') | ||
val_df = loadDataset(trainset) | ||
cpu_df = loadDataset(cpu_testset) | ||
iperf_df = loadDataset(iperf_testset) | ||
|
||
cpu_df.fillna(method='backfill', inplace=True) | ||
cpu_df.replace([np.inf, -np.inf], 0.0, inplace=True) | ||
|
||
iperf_df.fillna(method='backfill', inplace=True) | ||
iperf_df.replace([np.inf, -np.inf], 0.0, inplace=True) | ||
|
||
val_df.fillna(method='backfill', inplace=True) | ||
val_df.replace([np.inf, -np.inf], 0.0, inplace=True) | ||
|
||
logging.info('Normalizing evaluation data') | ||
for col in cols_to_normalize: | ||
cpu_df[col + '_normalized'] = normalizeFeature(cpu_df, col, normalization_stats[col + '_min'], normalization_stats[col + '_max']) | ||
iperf_df[col + '_normalized'] = normalizeFeature(iperf_df, col, normalization_stats[col + '_min'], normalization_stats[col + '_max']) | ||
val_df[col + '_normalized'] = normalizeFeature(val_df, col, normalization_stats[col + '_min'], normalization_stats[col + '_max']) | ||
|
||
logging.info('Evaluating for CPU and memory metrics') | ||
|
||
cpu_xs = [] | ||
cpu_ys = [] | ||
|
||
net_up_xs = [] | ||
net_up_ys = [] | ||
|
||
net_down_xs = [] | ||
net_down_ys = [] | ||
|
||
mem_xs_a1 = [] | ||
mem_ys_a1 = [] | ||
for sample_start in range(0, len(cpu_df)-time_window_threshold): | ||
sample_end = sample_start + time_window_threshold | ||
cpu_df_sample = cpu_df.iloc[sample_start:sample_end] | ||
|
||
# Select required columns for evaluation data batch | ||
cpu_dataset = cpu_df_sample[cols].to_numpy() | ||
|
||
# Prepare evaluation dataset batch | ||
X_test_cpu, y_test_cpu = split_sequences(cpu_dataset, n_steps) | ||
X_test_cpu = X_test_cpu.reshape((len(X_test_cpu), n_steps, n_features)) | ||
|
||
# Predict for evaluation dataset batch | ||
yhat_cpu = model.predict(X_test_cpu, verbose=0) | ||
|
||
cpu_rmse_dict = printPredictionErrors(y_test_cpu, yhat_cpu) | ||
|
||
net_up_xs.append(len(net_up_xs)) | ||
net_up_ys.append(cpu_rmse_dict['net_up_rmse']) | ||
|
||
net_down_xs.append(len(net_down_xs)) | ||
net_down_ys.append(cpu_rmse_dict['net_down_rmse']) | ||
|
||
cpu_xs.append(len(cpu_xs)) | ||
cpu_ys.append(cpu_rmse_dict['cpu_rmse']) | ||
|
||
mem_xs_a1.append(len(mem_xs_a1)) | ||
mem_ys_a1.append(cpu_rmse_dict['mem_rmse']) | ||
|
||
plt.plot(cpu_xs, cpu_ys, color='blue', label='CPU Percentage Rate (mode=user)') | ||
#plt.plot(mem_xs_a1, mem_ys_a1, color='red', label='Memory Percentage Rate') | ||
plt.title('CPU Attack Dataset') | ||
plt.xlabel('# of Sequence') | ||
plt.ylabel('RMSE') | ||
plt.legend() | ||
plt.savefig('plots/evaluate_cpu.png') | ||
plt.clf() | ||
|
||
logging.info('Evaluating for network and 5G metrics') | ||
|
||
net_up_xs = [] | ||
net_up_ys = [] | ||
|
||
net_down_xs = [] | ||
net_down_ys = [] | ||
|
||
net_5g_up_xs = [] | ||
net_5g_up_ys = [] | ||
|
||
net_5g_down_xs = [] | ||
net_5g_down_ys = [] | ||
|
||
mem_xs_a2 = [] | ||
mem_ys_a2 = [] | ||
for sample_start in range(0, len(iperf_df)-time_window_threshold): | ||
sample_end = sample_start + time_window_threshold | ||
iperf_df_sample = iperf_df.iloc[sample_start:sample_end] | ||
|
||
# Select required columns for evaluation data batch | ||
iperf_dataset = iperf_df_sample[cols].to_numpy() | ||
|
||
# Prepare evaluation dataset batch | ||
X_test_iperf, y_test_iperf = split_sequences(iperf_dataset, n_steps) | ||
X_test_iperf = X_test_iperf.reshape((len(X_test_iperf), n_steps, n_features)) | ||
|
||
# Predict for evaluation dataset batch | ||
yhat_iperf = model.predict(X_test_iperf, verbose=0) | ||
|
||
iperf_rmse_dict = printPredictionErrors(y_test_iperf, yhat_iperf) | ||
|
||
net_up_xs.append(len(net_up_xs)) | ||
net_up_ys.append(iperf_rmse_dict['net_up_rmse']) | ||
|
||
net_down_xs.append(len(net_down_xs)) | ||
net_down_ys.append(iperf_rmse_dict['net_down_rmse']) | ||
|
||
net_5g_up_xs.append(len(net_5g_up_xs)) | ||
net_5g_up_ys.append(iperf_rmse_dict['net_up_5g_rmse']) | ||
|
||
net_5g_down_xs.append(len(net_5g_down_xs)) | ||
net_5g_down_ys.append(iperf_rmse_dict['net_down_5g_rmse']) | ||
|
||
mem_xs_a2.append(len(mem_xs_a2)) | ||
mem_ys_a2.append(iperf_rmse_dict['mem_rmse']) | ||
|
||
plt.plot(net_up_xs, net_up_ys, color='green', label='Network Up Rate') | ||
plt.plot(net_down_xs, net_down_ys, color='purple', label='Network Down Rate') | ||
#plt.plot(mem_xs_a2, mem_ys_a2, color='red', label='Memory Percentage Rate') | ||
plt.title('iperf Attack Dataset') | ||
plt.xlabel('# of Sequence') | ||
plt.ylabel('RMSE') | ||
plt.legend() | ||
plt.savefig('plots/evaluate_iperf_net.png') | ||
plt.clf() | ||
|
||
plt.plot(net_5g_up_xs, net_5g_up_ys, color='green', label='5G Network Up Rate') | ||
plt.plot(net_5g_down_xs, net_5g_down_ys, color='blue', label='5G Network Down Rate') | ||
plt.title('iperf Attack Dataset') | ||
plt.xlabel('# of Sequence') | ||
plt.ylabel('RMSE') | ||
plt.legend() | ||
plt.savefig('plots/evaluate_iperf_5g.png') | ||
plt.clf() | ||
|
||
logging.info('Evaluating with training data') | ||
|
||
cpu_xs = [] | ||
cpu_ys = [] | ||
|
||
net_up_xs = [] | ||
net_up_ys = [] | ||
|
||
net_down_xs = [] | ||
net_down_ys = [] | ||
|
||
net_5g_up_xs = [] | ||
net_5g_up_ys = [] | ||
|
||
net_5g_down_xs = [] | ||
net_5g_down_ys = [] | ||
|
||
mem_xs_n = [] | ||
mem_ys_n = [] | ||
for sample_start in range(0, len(val_df)-time_window_threshold): | ||
sample_end = sample_start + time_window_threshold | ||
val_df_sample = val_df.iloc[sample_start:sample_end] | ||
|
||
# Select required columns for evaluation data batch | ||
val_dataset = val_df_sample[cols].to_numpy() | ||
|
||
# Prepare evaluation dataset batch | ||
X_test_val, y_test_val = split_sequences(val_dataset, n_steps) | ||
X_test_val = X_test_val.reshape((len(X_test_val), n_steps, n_features)) | ||
|
||
# Predict for evaluation dataset batch | ||
yhat_val = model.predict(X_test_val, verbose=0) | ||
|
||
val_rmse_dict = printPredictionErrors(y_test_val, yhat_val) | ||
|
||
cpu_xs.append(len(cpu_xs)) | ||
cpu_ys.append(val_rmse_dict['cpu_rmse']) | ||
|
||
mem_xs_n.append(len(mem_xs_n)) | ||
mem_ys_n.append(val_rmse_dict['mem_rmse']) | ||
|
||
net_up_xs.append(len(net_up_xs)) | ||
net_up_ys.append(val_rmse_dict['net_up_rmse']) | ||
|
||
net_down_xs.append(len(net_down_xs)) | ||
net_down_ys.append(val_rmse_dict['net_down_rmse']) | ||
|
||
net_5g_up_xs.append(len(net_5g_up_xs)) | ||
net_5g_up_ys.append(val_rmse_dict['net_up_5g_rmse']) | ||
|
||
net_5g_down_xs.append(len(net_5g_down_xs)) | ||
net_5g_down_ys.append(val_rmse_dict['net_down_5g_rmse']) | ||
|
||
plt.plot(cpu_xs, cpu_ys, color='blue', label='CPU Percentage Rate (mode=user)') | ||
plt.plot(mem_xs_n, mem_ys_n, color='red', label='Memory Percentage Rate') | ||
plt.plot(net_up_xs, net_up_ys, color='green', label='Network Up Rate') | ||
plt.plot(net_down_xs, net_down_ys, color='purple', label='Network Down Rate') | ||
plt.title('Training Dataset (Edge Metrics)') | ||
plt.xlabel('# of Sequence') | ||
plt.ylabel('RMSE') | ||
plt.legend() | ||
plt.savefig('plots/evaluate_val_1.png') | ||
plt.clf() | ||
|
||
plt.plot(net_5g_up_xs, net_5g_up_ys, color='orange', label='5G Network Up Rate') | ||
plt.plot(net_5g_down_xs, net_5g_down_ys, color='cyan', label='5G Network Down Rate') | ||
plt.title('Training Dataset (5G Metrics)') | ||
plt.xlabel('# of Sequence') | ||
plt.ylabel('RMSE') | ||
plt.legend() | ||
plt.savefig('plots/evaluate_val_2.png') | ||
plt.clf() | ||
|
||
|
||
if __name__ == "__main__": | ||
data_prefix = 'data/' | ||
model_prefix = 'model/' | ||
plots_prefix = 'plots/' | ||
|
||
trainset = data_prefix + 'normal.csv' | ||
cpu_testset = data_prefix + 'cpu_attack.csv' | ||
iperf_testset = data_prefix + 'iperf_attack.csv' | ||
|
||
time_window_threshold = 30 | ||
|
||
evaluate(None, cpu_testset, iperf_testset, trainset, time_window_threshold) |