ncnn部署轻量级人脸检测模型 rhttps://github.com/Linzaer/Ultra-Light-Fast-Generic-Face-Detector-1MB,和insightface人脸关键点检测模型 https://github.com/deepinsight/insightface。 人脸检测的输入分辨率为320x240,人脸检测+关键点在rk3566设备单线程CPU能达15-18FPS。rk3588/MT8195设备单线程能达30FPS以上。(占用低、速度快,Linzaer大佬的模型非常好用)
This is a sample ncnn android project, it depends on ncnn library and opencv
https://github.com/Tencent/ncnn
https://github.com/nihui/opencv-mobile
https://github.com/Tencent/ncnn/releases
- Download ncnn-YYYYMMDD-android-vulkan.zip or build ncnn for android yourself
- Extract ncnn-YYYYMMDD-android-vulkan.zip into app/src/main/jni and change the ncnn_DIR path to yours in app/src/main/jni/CMakeLists.txt
https://github.com/nihui/opencv-mobile
- Download opencv-mobile-XYZ-android.zip
- Extract opencv-mobile-XYZ-android.zip into app/src/main/jni and change the OpenCV_DIR path to yours in app/src/main/jni/CMakeLists.txt
- Open this project with Android Studio, build it and enjoy!
https://github.com/nihui/ncnn-android-mobilenetssd
https://github.com/Linzaer/Ultra-Light-Fast-Generic-Face-Detector-1MB