Skip to content

๐ŸŒ 2021 NIA ์ธ๊ณต์ง€๋Šฅ ๋ฐ์ดํ„ฐ ํ™œ์šฉ ๊ฒฝ์ง„๋Œ€ํšŒ [์žฅ๋ ค์ƒ ์ˆ˜์ƒ์ž‘]๐ŸŒ 

Notifications You must be signed in to change notification settings

2021-NEXT-LEVEL/StopChildAbuse

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

81 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

StopChildAbuse๐Ÿ‘ถ๐Ÿป

๐Ÿ‘ฉโ€๐Ÿ’ป2021 NIA ์ธ๊ณต์ง€๋Šฅ ๋ฐ์ดํ„ฐ ํ™œ์šฉ ๊ฒฝ์ง„๋Œ€ํšŒ ์žฅ๋ ค์ƒ ์ˆ˜์ƒ์ž‘

The 3rd prize of the 2021 NIA Artificial Intelligence Data Contest

'ChildKeeper' is an Automation system for automating mosaic and encryption processing to take out CCTV footage to prevent child abuse in daycare centers.

โšกTEAM _ NEXT LEVELโšก

ChildKeeper started with NEXT LEVEL's hope that child abuse would no longer occur using this automation system.

๐Ÿ™ˆ Hyewon Kang(Team Leader) : https://github.com/HyewonKkang

๐Ÿ•ต๐Ÿผโ€โ™€๏ธ Yujung Gil(Team Member) : https://github.com/fairyroad

๐ŸŽ…๐Ÿป Minjeong Kim(Team Member) : https://github.com/kimminje0ng

๐Ÿ‘ฉ๐Ÿปโ€๐Ÿš€ Su-A Jang(Team Member) : https://github.com/sua1223

๐ŸŠ๐Ÿผโ€โ™‚๏ธTech Stack

Version Control

Git/Github

Frontend

Hybrid App : React

Backend

Framework : Django

DB

Image Data : MySQL

Development Environment

Visual studio code
Google colab
Mac OS Apple Silicon(M1)

Image Processing

Deep Sort
Yolo v5
PyTorch 1.7.0

Encryption

OpenCV-python 4.1.2
Pycryptodome

โคSystem Architectureโค

[YOUR_ALT]

The service development environment is as above. The frontend of the web page used React, the backend used Django, and the database used MySQL. Face detection and tracking were performed for the image processing part using Yolo version 5 and Deepsort, and Pyroptodome and OpenCV were used for encryption, decryption, and mosaic parts.

๐Ÿ“ขHow to test our face detection model?

$ git clone https://github.com/ultralytics/yolov5
$ cd yolov5
$ pip install -r requirements.txt

  • Download the dataset(facedataset -> save your local environment)
https://drive.google.com/file/d/1F70qUfhkLA4lAVOJvlGbdRM5QwlAUQT0/view?usp=sharing

  • Modify data.yaml
[Exist Version]
train: ../train/images
val: ../valid/images

[Modification Version]
train: {your saved path}/yolov5/train.txt
val: {your saved path}/yolov5/test.txt
--------------------
[for using GPU server]
train: D:/11_23_yolo/yolov5/train.txt
val: D:/11_23_yolo/yolov5/test.txt

  • Move maketxt.py into yolov5 folder and run it --> Being made train.txt, test.txt
$ python maketxt.py

  • Run
$ python train.py --img 416 --batch 16 --epochs 100 --data data.yaml --weights yolov5s.pt --name result --cfg ./models/yolov5s.yaml

Google Colab

Open In Colab

๐Ÿ“ขHow to test the detect and tracking code?

$ git clone https://github.com/2021-NEXT-LEVEL/StopChildAbuse
$ cd detection_and_tracking
$ pip install -qr requirements.txt

#Enter the commands below using colab or jupyternotebook
import torch
from IPython.display import Image, clear_output  # to display images
clear_output()
print(f"Setup complete. Using torch {torch.__version__} ({torch.cuda.get_device_properties(0).name if torch.cuda.is_available() else 'CPU'})")

#Enter the commands below
$ python track.py --yolo_weights [folder location]/Yolov5_DeepSort_Pytorch/yolov5/weights/best.pt --source heart_Trim_7.mp4[your video name] --save-vid

#You can check out put here
txt file for bounding box : Yolov5_DeepSort_Pytorch/inference/output/[your video name].txt
output mp4 file : Yolov5_DeepSort_Pytorch/inference/output/[your video name].mp4

๐Ÿ“ขHow to run the website?

$ git clone https://github.com/2021-NEXT-LEVEL/StopChildAbuse.git

// backend
$ cd backend
$ python3 -m venv django_venv
$ source django_venv/bin/activate
(django_venv) $ pip install -r requirements.txt
(django_venv) $ python manage.py migrate
(django_venv) $ python manage.py createsuperuser
(django_venv) $ python manage.py runserver
# Load the site at http://127.0.0.1:8000/

// frontend
$ cd frontend
$ npm install
$ npm start

๐Ÿ“ŒService Prototype

You can watch the video through the YouTube link below.
Demo

Thanks, NIA and mikel-brostrom.

About

๐ŸŒ 2021 NIA ์ธ๊ณต์ง€๋Šฅ ๋ฐ์ดํ„ฐ ํ™œ์šฉ ๊ฒฝ์ง„๋Œ€ํšŒ [์žฅ๋ ค์ƒ ์ˆ˜์ƒ์ž‘]๐ŸŒ 

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published