From a242eab68612a71d7598027d93ae170ed5fea3b5 Mon Sep 17 00:00:00 2001 From: Marcelo Zoccoler Date: Mon, 1 Jul 2024 15:51:31 +0200 Subject: [PATCH] Add tests for post-processing widgets and functions, and set a few global inputs --- .../_tests/test_widget.py | 139 ++++++++++++++++-- 1 file changed, 124 insertions(+), 15 deletions(-) diff --git a/src/napari_flim_phasor_plotter/_tests/test_widget.py b/src/napari_flim_phasor_plotter/_tests/test_widget.py index 9e6b10f..6bdd008 100644 --- a/src/napari_flim_phasor_plotter/_tests/test_widget.py +++ b/src/napari_flim_phasor_plotter/_tests/test_widget.py @@ -6,34 +6,67 @@ # make_napari_viewer is a pytest fixture that returns a napari viewer object # capsys is a pytest fixture that captures stdout and stderr output streams +# Global inputs +laser_frequency = 40 # MHz +amplitude = 1 +tau_list = [0.1, 0.2, 0.5, 1, 2, 5, 10, 25, 40] # ns +# Obs: after running calculate phasors with default thresholding (10), 0.1 and 0.2 associated pixels are excluded/masked out because they end up with low photon budget (summed intensity < 10) given the low amplitude and fast decay -def test_make_flim_phasor_plot_and_plotter(make_napari_viewer, capsys): - output_table = pd.DataFrame({ +table = pd.DataFrame({ 'label': [1, 2, 3, 4, 5, 6, 7], 'G': [0.984806, 0.941213, 0.799235, 0.388781, 0.137519, 0.025144, 0.010088], 'S': [0.120760, 0.233658, 0.399003, 0.485904, 0.342826, 0.154997, 0.098370], 'pixel_x_coordinates': [2, 0, 1, 2, 0, 1, 2], 'pixel_y_coordinates': [0, 1, 1, 1, 2, 2, 2], 'pixel_z_coordinates': [0, 0, 0, 0, 0, 0, 0], - 'frame': [0, 0, 0, 0, 0, 0, 0] + 'frame': [0, 0, 0, 0, 0, 0, 0], }) +labelled_pixels_masked = np.array( + [ + [ + [ + [0, 0, 1], # 0 represents masked pixels after default thresholding (10) + [2, 3, 4], + [5, 6, 7], + ] + ] + ] +) + +phasor_clusters_labels = np.array( + [ + [ + [ + [0, 0, 2], # 0 represents noise or masked pixels + [1, 1, 2], # 1 represents not selected pixels + [3, 3, 3], # 2 and 3 represent the first 2 selected clusters labels (in table they are 1 and 2) + ] + ] + ] + ) +# Manual clusters column contains phasor cluster labels, where labelled pixels are present, minus 1 because 0 is reserved for noise clusters and 1 for not selected pixels +manual_clusters_column = pd.Series(phasor_clusters_labels[labelled_pixels_masked>0]-1, name='MANUAL_CLUSTER_ID', index=table.index) +table_with_clusters = pd.concat([table, manual_clusters_column], axis=1) + +def test_make_flim_phasor_plot_and_plotter(make_napari_viewer, capsys): + # Inputs for manual selection input_selection_vertices = np.array( [ [0.940, 0.23], [0.940, 0.24], [0.945, 0.24], - [0.945, 0.23] + [0.945, 0.23], ] ) # square vertices with G and S coordinates around 1 ns - - output_selected_cluster_image = np.array( + # Expected output array after manual selection + output_selected_cluster_labels = np.array( [ [ [ [0, 0, 0], [2, 0, 0], - [0, 0, 0] + [0, 0, 0], ] ] ] @@ -41,9 +74,7 @@ def test_make_flim_phasor_plot_and_plotter(make_napari_viewer, capsys): # Test make_flim_phasor_plot viewer = make_napari_viewer() - laser_frequency = 40 # MHz - amplitude = 1 - tau_list = [0.1, 0.2, 0.5, 1, 2, 5, 10, 25, 40] # nss + number_of_time_points = 1000 time_array = create_time_array(laser_frequency, number_of_time_points) @@ -56,16 +87,18 @@ def test_make_flim_phasor_plot_and_plotter(make_napari_viewer, capsys): # create the widget my_widget = make_flim_phasor_plot() - # execute our function + # execute function plotter_widget, labels_layer = my_widget() # Check if the plotter widget was created assert plotter_widget is not None - + # Check if outputs match expected values assert len(viewer.layers) == 2 - assert list(labels_layer.features.columns) == list(output_table.columns) + assert list(labels_layer.features.columns) == list(table.columns) assert labels_layer.features.shape == (7, 7) + assert labels_layer.name.startswith( + 'Labelled_pixels_from_') assert np.allclose(labels_layer.features.values, - output_table.values, rtol=0, atol=1e-5) + table.values, rtol=0, atol=1e-5) # Test plotter widget options and selection @@ -81,6 +114,82 @@ def test_make_flim_phasor_plot_and_plotter(make_napari_viewer, capsys): phasor_clusters_layer = viewer.layers[-1] assert phasor_clusters_layer.name.startswith( 'Phasor_clusters_from_') - assert np.allclose(phasor_clusters_layer.data, output_selected_cluster_image, rtol=0, atol=1e-5) + assert np.allclose(phasor_clusters_layer.data, output_selected_cluster_labels, rtol=0, atol=1e-5) +def test_manual_label_extract(): + from napari_flim_phasor_plotter._widget import manual_label_extract + from napari.layers import Labels + # Inputs + selected_label = 2 + # Expected output array + output_selected_cluster_labels = np.array( + [ + [0, 0, 2], + [0, 0, 2], + [0, 0, 0], + ] + ) + + labels_layer = Labels(phasor_clusters_labels) + selected_label_layer = manual_label_extract(labels_layer, selected_label) + + assert selected_label_layer.data.shape == output_selected_cluster_labels.shape # squeeze dimensions to match other processing tools + assert np.array_equal(selected_label_layer.data, output_selected_cluster_labels) + +def test_get_n_largest_cluster_labels(): + from napari_flim_phasor_plotter._widget import get_n_largest_cluster_labels + # Input + number_of_clusters = 2 + # Expected outputs + expected_list_of_cluster_labels = [3, 2] # lergest cluster is 3, second largest is 2 (1 represents not selected pixels) + + list_of_cluster_labels = get_n_largest_cluster_labels(table_with_clusters, number_of_clusters) + + assert len(list_of_cluster_labels) == number_of_clusters + assert list(list_of_cluster_labels) == expected_list_of_cluster_labels + +def test_Split_N_Largest_Cluster_Labels(make_napari_viewer): + from napari_flim_phasor_plotter._widget import Split_N_Largest_Cluster_Labels + from napari.layers import Labels + + viewer = make_napari_viewer() + # Inputs + labelled_pixels_layer = Labels(labelled_pixels_masked, features=table_with_clusters) + phasor_clusters_layer = Labels(phasor_clusters_labels) + number_of_clusters = 2 + clustering_id = manual_clusters_column.name + # Expected output arrays + largest_cluster_labels = np.array( + [ + [0, 0, 0], + [0, 0, 0], + [3, 3, 3], + ] + ) + second_largest_cluster_labels = np.array( + [ + [0, 0, 2], + [0, 0, 2], + [0, 0, 0], + ] + ) + + # Add layers to viewer + viewer.add_layer(labelled_pixels_layer) + viewer.add_layer(phasor_clusters_layer) + n_layers_in_viewer = 2 + # Set widget options + split_n_largest_widget = Split_N_Largest_Cluster_Labels(viewer) + split_n_largest_widget._labels_layer_combobox.value = labelled_pixels_layer + split_n_largest_widget._clusters_labels_layer_combobox.value = phasor_clusters_layer + split_n_largest_widget._n_spinbox.value = number_of_clusters + split_n_largest_widget._clustering_id_combobox.value = clustering_id + # Run widget + split_n_largest_widget._on_run_clicked() + # Check new layers are created + assert len(viewer.layers) == n_layers_in_viewer + number_of_clusters + # Check that first layer created contains only largest cluster label + assert np.array_equal(viewer.layers[-2].data, largest_cluster_labels) + # Check that second layer created contain only second largest cluster label + assert np.array_equal(viewer.layers[-1].data, second_largest_cluster_labels)