-
Notifications
You must be signed in to change notification settings - Fork 133
/
vis_snapshot.py
96 lines (75 loc) · 2.58 KB
/
vis_snapshot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import pickle
import os
import h5py
import numpy as np
import open3d as o3d
from snapshot_smpl.renderer import Renderer
import cv2
import tqdm
def read_pickle(pkl_path):
with open(pkl_path, 'rb') as f:
u = pickle._Unpickler(f)
u.encoding = 'latin1'
return u.load()
def get_KRTD(camera):
K = np.zeros([3, 3])
K[0, 0] = camera['camera_f'][0]
K[1, 1] = camera['camera_f'][1]
K[:2, 2] = camera['camera_c']
K[2, 2] = 1
R = np.eye(3)
T = np.zeros([3])
D = camera['camera_k']
return K, R, T, D
def get_o3d_mesh(vertices, faces):
mesh = o3d.geometry.TriangleMesh()
mesh.vertices = o3d.utility.Vector3dVector(vertices)
mesh.triangles = o3d.utility.Vector3iVector(faces)
mesh.compute_vertex_normals()
return mesh
def get_smpl(base_smpl, betas, poses, trans):
base_smpl.betas = betas
base_smpl.pose = poses
base_smpl.trans = trans
vertices = np.array(base_smpl)
faces = base_smpl.f
mesh = get_o3d_mesh(vertices, faces)
return mesh
def render_smpl(vertices, img, K, R, T):
rendered_img = renderer.render_multiview(vertices, K[None], R[None],
T[None, None], [img])[0]
return rendered_img
data_root = 'data/people_snapshot'
video = 'female-3-casual'
# if you do not have these smpl models, you could download them from https://drive.google.com/file/d/1HCVcZPu7UOe1Vv4OHHEoGmVUfKyLFq5d/view?usp=sharing
model_paths = [
'basicModel_f_lbs_10_207_0_v1.0.0.pkl',
'basicmodel_m_lbs_10_207_0_v1.0.0.pkl'
]
camera_path = os.path.join(data_root, video, 'camera.pkl')
camera = read_pickle(camera_path)
K, R, T, D = get_KRTD(camera)
mask_path = os.path.join(data_root, video, 'masks.hdf5')
masks = h5py.File(mask_path)['masks']
smpl_path = os.path.join(data_root, video, 'reconstructed_poses.hdf5')
smpl = h5py.File(smpl_path)
betas = smpl['betas']
pose = smpl['pose']
trans = smpl['trans']
if 'female' in video:
model_path = model_paths[0]
else:
model_path = model_paths[1]
model_data = read_pickle(model_path)
faces = model_data['f']
renderer = Renderer(height=1080, width=1080, faces=faces)
img_dir = os.path.join(data_root, video, 'image')
vertices_dir = os.path.join(data_root, video, 'vertices')
num_img = len(os.listdir(img_dir))
for i in tqdm.tqdm(range(num_img)):
img = cv2.imread(os.path.join(img_dir, '{}.jpg'.format(i)))
img = cv2.undistort(img, K, D)
vertices = np.load(os.path.join(vertices_dir, '{}.npy'.format(i)))
rendered_img = render_smpl(vertices, img, K, R, T)
cv2.imshow('main', rendered_img)
cv2.waitKey(50) & 0xFF