forked from JK2A/BlindHandAssistance
-
Notifications
You must be signed in to change notification settings - Fork 0
/
hackathon_object_detection.py
160 lines (112 loc) · 4.57 KB
/
hackathon_object_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import numpy as np
import os
import six.moves.urllib as urllib
import sys
import tarfile
import tensorflow as tf
import zipfile
from collections import defaultdict
from io import StringIO
from matplotlib import pyplot as plt
from PIL import Image
import pathlib
from research.object_detection.utils import ops as utils_ops
from research.object_detection.utils import label_map_util
from research.object_detection.utils import visualization_utils as vis_util
import cv2
import time
# methods
def load_model(model_name):
base_url = 'http://download.tensorflow.org/models/object_detection/'
model_file = model_name + '.tar.gz'
model_dir = tf.keras.utils.get_file(
fname=model_name,
origin=base_url + model_file,
untar=True)
model_dir = pathlib.Path(model_dir)/"saved_model"
model = tf.saved_model.load(str(model_dir))
model = model.signatures['serving_default']
return model
def get_category_index():
return category_index
def show_inference(model, image, category_index):
# the array based representation of the image will be used later in order to prepare the
# result image with boxes and labels on it.
image_np = image
# Actual detection.
output_dict = run_inference_for_single_image(model, image_np)
# Visualization of the results of a detection.
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
output_dict['detection_boxes'],
output_dict['detection_classes'],
output_dict['detection_scores'],
category_index,
instance_masks=output_dict.get('detection_masks_reframed', None),
use_normalized_coordinates=True,
line_thickness=8)
detected_objects = {}
current = 0
while current < len(output_dict['detection_scores']) and output_dict['detection_scores'][current] > 0.5:
current_obj_index = output_dict['detection_classes'][current] # int
obj_name = category_index[current_obj_index]['name'] # string
location = output_dict['detection_boxes'][current] # pass in 1x4 np array
x = int(np.average((location[1], location[3])) * image_np.shape[1])
y = int(np.average((location[0], location[2])) * image_np.shape[0])
location = (x,y)
if obj_name not in detected_objects:
detected_objects[obj_name] = []
detected_objects[obj_name].append(location)
current += 1
# print(detected_objects)
# imshow here
# cv2.imshow('video', image_np)
# cv2.waitKey(1)
return detected_objects
# ymin, xmin, ymax, xmax = box
def run_inference_for_single_image(model, image):
image = np.asarray(image)
# The input needs to be a tensor, convert it using `tf.convert_to_tensor`.
input_tensor = tf.convert_to_tensor(image)
# The model expects a batch of images, so add an axis with `tf.newaxis`.
input_tensor = input_tensor[tf.newaxis,...]
# Run inference
output_dict = model(input_tensor)
# All outputs are batches tensors.
# Convert to numpy arrays, and take index [0] to remove the batch dimension.
# We're only interested in the first num_detections.
num_detections = int(output_dict.pop('num_detections'))
output_dict = {key:value[0, :num_detections].numpy()
for key,value in output_dict.items()}
output_dict['num_detections'] = num_detections
# detection_classes should be ints.
output_dict['detection_classes'] = output_dict['detection_classes'].astype(np.int64)
# Handle models with masks:
if 'detection_masks' in output_dict:
# Reframe the the bbox mask to the image size.
detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks(
output_dict['detection_masks'], output_dict['detection_boxes'],
image.shape[0], image.shape[1])
detection_masks_reframed = tf.cast(detection_masks_reframed > 0.5,
tf.uint8)
output_dict['detection_masks_reframed'] = detection_masks_reframed.numpy()
return output_dict
# end
def main():
# patch tf1 into `utils.ops`
video_capture = cv2.VideoCapture(0)
while True:
ret, frame = video_capture.read(0)
final_dict = show_inference(detection_model, frame, category_index)
utils_ops.tf = tf.compat.v1
# Patch the location of gfile
tf.gfile = tf.io.gfile
# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = 'data/mscoco_label_map.pbtxt'
category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS, use_display_name=True)
model_name = 'ssd_mobilenet_v1_coco_2017_11_17'
detection_model = load_model(model_name)
def getObjectPositions(frame):
return show_inference(detection_model, frame, category_index)
if __name__ == "__main__":
main()