forked from microsoft/QuantumKatas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ReferenceImplementation.qs
314 lines (270 loc) · 11.9 KB
/
ReferenceImplementation.qs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT license.
//////////////////////////////////////////////////////////////////////
// This file contains reference solutions to all tasks.
// The tasks themselves can be found in Tasks.qs file.
// We recommend that you try to solve the tasks yourself first,
// but feel free to look up the solution if you get stuck.
//////////////////////////////////////////////////////////////////////
namespace Quantum.Kata.DistinguishUnitaries {
open Microsoft.Quantum.Canon;
open Microsoft.Quantum.Convert;
open Microsoft.Quantum.Math;
open Microsoft.Quantum.Arithmetic;
open Microsoft.Quantum.Characterization;
open Microsoft.Quantum.Intrinsic;
open Microsoft.Quantum.Measurement;
open Microsoft.Quantum.Oracles;
// Task 1.1. Identity or Pauli X?
// Output: 0 if the given operation is the I gate,
// 1 if the given operation is the X gate.
operation DistinguishIfromX_Reference (unitary : (Qubit => Unit is Adj+Ctl)) : Int {
// apply operation to the |0⟩ state and measure: |0⟩ means I, |1⟩ means X
using (q = Qubit()) {
unitary(q);
return M(q) == Zero ? 0 | 1;
}
}
// Task 1.2. Identity or Pauli Z?
// Output: 0 if the given operation is the I gate,
// 1 if the given operation is the Z gate.
operation DistinguishIfromZ_Reference (unitary : (Qubit => Unit is Adj+Ctl)) : Int {
// apply operation to the |+⟩ state and measure: |+⟩ means I, |-⟩ means Z
using (q = Qubit()) {
H(q);
unitary(q);
H(q);
return M(q) == Zero ? 0 | 1;
}
}
// Task 1.3. Z or S?
// Output: 0 if the given operation is the Z gate,
// 1 if the given operation is the S gate.
operation DistinguishZfromS_Reference (unitary : (Qubit => Unit is Adj+Ctl)) : Int {
// apply operation twice to |+⟩ state and measure: |+⟩ means Z, |-⟩ means S
// X will end up as XXX = X, H will end up as HXH = Z (does not change |0⟩ state)
using (q = Qubit()) {
H(q);
unitary(q);
unitary(q);
H(q);
return M(q) == Zero ? 0 | 1;
}
}
// Task 1.4. Hadamard or Pauli X?
// Output: 0 if the given operation is the H gate,
// 1 if the given operation is the X gate.
operation DistinguishHfromX_Reference (unitary : (Qubit => Unit is Adj+Ctl)) : Int {
// apply operation unitary - X - unitary to |0⟩ state and measure: |0⟩ means H, |1⟩ means X
// X will end up as XXX = X, H will end up as HXH = Z (does not change |0⟩ state)
using (q = Qubit()) {
within {
unitary(q);
} apply {
X(q);
}
return M(q) == Zero ? 0 | 1;
}
}
// Task 1.5. Z or -Z?
// Output: 0 if the given operation is the Z gate,
// 1 if the given operation is the -Z gate.
operation DistinguishZfromMinusZ_Reference (unitary : (Qubit => Unit is Adj+Ctl)) : Int {
// apply Controlled unitary to (|0⟩ + |1⟩) ⊗ |0⟩ state: Z will leave it unchanged while -Z will make it into (|0⟩ + |1⟩) ⊗ |0⟩
using (qs = Qubit[2]) {
// prep (|0⟩ + |1⟩) ⊗ |0⟩
H(qs[0]);
Controlled unitary(qs[0..0], qs[1]);
H(qs[0]);
// |0⟩ means it was Z, |1⟩ means -Z
return M(qs[0]) == Zero ? 0 | 1;
}
}
// Task 1.6. Rz or R1 (arbitrary angle)?
// Output: 0 if the given operation is the Rz gate,
// 1 if the given operation is the R1 gate.
operation DistinguishRzFromR1_Reference (unitary : ((Double, Qubit) => Unit is Adj+Ctl)) : Int {
using (qs = Qubit[2]) {
within {
H(qs[0]);
} apply {
Controlled unitary(qs[0..0], (2.0 * PI(), qs[1]));
}
return M(qs[0]) == Zero ? 1 | 0;
}
}
// Task 1.7. Y or XZ?
// Output: 0 if the given operation is the Y gate,
// 1 if the given operation is the XZ gate.
operation DistinguishYfromXZ_Reference (unitary : (Qubit => Unit is Adj+Ctl)) : Int {
// Y = iXZ
// Controlled Y introduces an extra phase of i (if applied to any state) compared to XZ
// applying it twice introduces an extra phase of -1
// It actually doesn't matter to which state to apply it!
using (qs = Qubit[2]) {
// prep (|0⟩ + |1⟩) ⊗ |0⟩
within { H(qs[0]); }
apply {
Controlled unitary(qs[0..0], qs[1]);
Controlled unitary(qs[0..0], qs[1]);
}
// 0 means it was Y
return M(qs[0]) == Zero ? 0 | 1;
}
}
operation Oracle_Reference (U : (Qubit => Unit is Adj + Ctl), power : Int, target : Qubit[]) : Unit is Adj + Ctl {
for (i in 1 .. power) {
U(target[0]);
}
}
// Task 1.8. Y, XZ, -Y or -XZ?
// Output: 0 if the given operation is the Y gate,
// 1 if the given operation is the -XZ gate,
// 2 if the given operation is the -Y gate,
// 3 if the given operation is the XZ gate.
operation DistinguishYfromXZWithPhases_Reference (unitary : (Qubit => Unit is Adj+Ctl)) : Int {
// Run phase estimation on the unitary and the +1 eigenstate of the Y gate |0⟩ + i|1⟩
// Construct a phase estimation oracle from the unitary
let oracle = DiscreteOracle(Oracle_Reference(unitary, _, _));
// Allocate qubits to hold the eigenstate of U and the phase in a big endian register
mutable phaseInt = 0;
using ((eigenstate, phaseRegister) = (Qubit[1], Qubit[2])) {
let phaseRegisterBE = BigEndian(phaseRegister);
// Prepare the eigenstate of U
H(eigenstate[0]);
S(eigenstate[0]);
// Call library
QuantumPhaseEstimation(oracle, eigenstate, phaseRegisterBE);
// Read out the phase
set phaseInt = MeasureInteger(BigEndianAsLittleEndian(phaseRegisterBE));
ResetAll(eigenstate);
ResetAll(phaseRegister);
}
// Convert the measured phase into return value
return phaseInt;
}
// ------------------------------------------------------
internal function ComputeRepetitions(angle : Double, offset : Int, accuracy : Double) : Int {
mutable pifactor = 0;
while (true) {
let pimultiple = PI() * IntAsDouble(2 * pifactor + offset);
let times = Round(pimultiple / angle);
if (AbsD(pimultiple - (IntAsDouble(times) * angle)) / PI() < accuracy) {
return times;
}
set pifactor += 1;
}
return 0;
}
// Task 1.9. Rz or Ry (fixed angle)?
// Output: 0 if the given operation is the Rz(θ) gate,
// 1 if the given operation is the Ry(θ) gate.
operation DistinguishRzFromRy_Reference (theta : Double, unitary : (Qubit => Unit is Adj+Ctl)) : Int {
using (q = Qubit()) {
let times = ComputeRepetitions(theta, 1, 0.1);
mutable attempt = 1;
mutable measuredOne = false;
repeat {
for (_ in 1..times) {
unitary(q);
}
// for Rz, we'll never venture away from |0⟩ state, so as soon as we got |1⟩ we know it's not Rz
if (MResetZ(q) == One) {
set measuredOne = true;
}
// if we try several times and still only get |0⟩s, chances are that it is Rz
} until (attempt == 5 or measuredOne)
fixup {
set attempt += 1;
}
return measuredOne ? 1 | 0;
}
}
// Task 1.10*. Rz or R1 (fixed angle)?
// Output: 0 if the given operation is the Rz(θ) gate,
// 1 if the given operation is the R1(θ) gate.
operation DistinguishRzFromR1WithAngle_Reference (theta : Double, unitary : (Qubit => Unit is Adj+Ctl)) : Int {
// library solution that uses direct access to the simulator for speedup and reliability
return Floor(EstimateRealOverlapBetweenStates(ApplyToEachA(H, _), ApplyToEachCA(unitary, _), ApplyToEachCA(R1(theta, _), _), 1, 100000));
}
// Task 1.11. Distinguish 4 Pauli unitaries
// Output: 0 if the given operation is the I gate,
// 1 if the given operation is the X gate,
// 2 if the given operation is the Y gate,
// 3 if the given operation is the Z gate,
operation DistinguishPaulis_Reference (unitary : (Qubit => Unit is Adj+Ctl)) : Int {
// apply operation to the 1st qubit of a Bell state and measure in Bell basis
using (qs = Qubit[2]) {
within {
H(qs[0]);
CNOT(qs[0], qs[1]);
} apply {
unitary(qs[0]);
}
// after this I -> 00, X -> 01, Y -> 11, Z -> 10
let ind = MeasureInteger(LittleEndian(qs));
let returnValues = [0, 3, 1, 2];
return returnValues[ind];
}
}
//////////////////////////////////////////////////////////////////
// Part II. Multi-Qubit Gates
//////////////////////////////////////////////////////////////////
// Task 2.1. I ⊗ X or CNOT?
// Output: 0 if the given operation is I ⊗ X,
// 1 if the given operation is the CNOT gate.
operation DistinguishIXfromCNOT_Reference (unitary : (Qubit[] => Unit is Adj+Ctl)) : Int {
// apply to |00⟩ and measure 2nd qubit: CNOT will do nothing, I ⊗ X will change to |01⟩
using (qs = Qubit[2]) {
unitary(qs);
return M(qs[1]) == One ? 0 | 1;
}
}
// Task 2.2. Figure out the direction of CNOT
// Output: 0 if the given operation is CNOT₁₂,
// 1 if the given operation is CNOT₂₁.
operation CNOTDirection_Reference (unitary : (Qubit[] => Unit is Adj+Ctl)) : Int {
// apply to |01⟩ and measure 1st qubit: CNOT₁₂ will do nothing, CNOT₂₁ will change to |11⟩
using (qs = Qubit[2]) {
within { X(qs[1]); }
apply { unitary(qs); }
return M(qs[0]) == Zero ? 0 | 1;
}
}
// Task 2.3. CNOT₁₂ or SWAP?
// Output: 0 if the given operation is the CNOT₁₂ gate,
// 1 if the given operation is the SWAP gate.
operation DistinguishCNOTfromSWAP_Reference (unitary : (Qubit[] => Unit is Adj+Ctl)) : Int {
// apply to |01⟩ and measure 1st qubit: CNOT will do nothing, SWAP will change to |10⟩
using (qs = Qubit[2]) {
X(qs[1]);
unitary(qs);
Reset(qs[1]);
return M(qs[0]) == Zero ? 0 | 1;
}
}
// Task 2.4. Identity, CNOTs or SWAP?
// Output: 0 if the given operation is the I ⊗ I gate,
// 1 if the given operation is the CNOT₁₂ gate,
// 2 if the given operation is the CNOT₂₁ gate,
// 3 if the given operation is the SWAP gate.
operation DistinguishTwoQubitUnitaries_Reference (unitary : (Qubit[] => Unit is Adj+Ctl)) : Int {
// first run: apply to |11⟩; CNOT₁₂ will give |10⟩, CNOT₂₁ will give |01⟩, II and SWAP will remain |11⟩
using (qs = Qubit[2]) {
ApplyToEach(X, qs);
unitary(qs);
let ind = MeasureInteger(LittleEndian(qs));
if (ind == 1 or ind == 2) {
// respective CNOT
return ind;
}
}
// second run: distinguish II from SWAP, apply to |01⟩: II will remain |01⟩, SWAP will become |10⟩
using (qs = Qubit[2]) {
X(qs[1]);
unitary(qs);
let ind = MeasureInteger(LittleEndian(qs));
return ind == 1 ? 3 | 0;
}
}
}