Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

预测结果为全灰图 #241

Open
simplew2011 opened this issue Sep 13, 2022 · 2 comments
Open

预测结果为全灰图 #241

simplew2011 opened this issue Sep 13, 2022 · 2 comments

Comments

@simplew2011
Copy link

image

  • 默认数据集,训练5轮
  • 预测发现全部是灰图,没有结果

看loss比较大,loss: 0.5252 - accuracy: 0.7814,就是没有模型收敛。
修改loss,lr,Adam(lr = 1e-5),steps_per_epoch=2000, epochs=20,batch_size=32。
loss缓慢下降,正常收敛,预测正常
关键是batch_size和lr需要微调,多调整几次看loss有没有下降趋势,没有的话中断训练,继续修改

2022-09-13 05:10:38.208563: I tensorflow/stream_executor/cuda/cuda_dnn.cc:384] Loaded cuDNN version 8201
2000/2000 [==============================] - ETA: 0s - loss: 0.2607 - accuracy: 0.8837
Epoch 1: loss improved from inf to 0.26072, saving model to unet_membrane.hdf5
2000/2000 [==============================] - 858s 424ms/step - loss: 0.2607 - accuracy: 0.8837
Epoch 2/20
2000/2000 [==============================] - ETA: 0s - loss: 0.1718 - accuracy: 0.9249
Epoch 2: loss improved from 0.26072 to 0.17182, saving model to unet_membrane.hdf5
2000/2000 [==============================] - 849s 425ms/step - loss: 0.1718 - accuracy: 0.9249
Epoch 3/20
2000/2000 [==============================] - ETA: 0s - loss: 0.1499 - accuracy: 0.9342
Epoch 3: loss improved from 0.17182 to 0.14994, saving model to unet_membrane.hdf5
2000/2000 [==============================] - 850s 425ms/step - loss: 0.1499 - accuracy: 0.9342
Epoch 4/20
2000/2000 [==============================] - ETA: 0s - loss: 0.1355 - accuracy: 0.9406
Epoch 4: loss improved from 0.14994 to 0.13549, saving model to unet_membrane.hdf5
2000/2000 [==============================] - 851s 426ms/step - loss: 0.1355 - accuracy: 0.9406
Epoch 5/20
2000/2000 [==============================] - ETA: 0s - loss: 0.1243 - accuracy: 0.9455
Epoch 5: loss improved from 0.13549 to 0.12432, saving model to unet_membrane.hdf5
2000/2000 [==============================] - 841s 421ms/step - loss: 0.1243 - accuracy: 0.9455
Epoch 6/20
2000/2000 [==============================] - ETA: 0s - loss: 0.1154 - accuracy: 0.9495
Epoch 6: loss improved from 0.12432 to 0.11543, saving model to unet_membrane.hdf5
2000/2000 [==============================] - 841s 420ms/step - loss: 0.1154 - accuracy: 0.9495
Epoch 7/20
2000/2000 [==============================] - ETA: 0s - loss: 0.1082 - accuracy: 0.9527
Epoch 7: loss improved from 0.11543 to 0.10821, saving model to unet_membrane.hdf5
2000/2000 [==============================] - 839s 419ms/step - loss: 0.1082 - accuracy: 0.9527
Epoch 8/20
2000/2000 [==============================] - ETA: 0s - loss: 0.1022 - accuracy: 0.9554
Epoch 8: loss improved from 0.10821 to 0.10224, saving model to unet_membrane.hdf5
2000/2000 [==============================] - 840s 420ms/step - loss: 0.1022 - accuracy: 0.9554
Epoch 9/20
2000/2000 [==============================] - ETA: 0s - loss: 0.0972 - accuracy: 0.9576
Epoch 9: loss improved from 0.10224 to 0.09725, saving model to unet_membrane.hdf5
2000/2000 [==============================] - 843s 422ms/step - loss: 0.0972 - accuracy: 0.9576

@anson0626150
Copy link

so do I

@Sisyphka
Copy link

really appreciate, you fix the problem that always perplex me, using the measures, Unet work

Epoch 4/25
500/500 [==============================] - ETA: 0s - loss: 0.0701 - accuracy: 0.9694
Epoch 4: loss improved from 0.08390 to 0.07009, saving model to unet_membrane.hdf5

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants