-
Notifications
You must be signed in to change notification settings - Fork 0
/
DuelingDQNPrioritizedReplay.py
307 lines (249 loc) · 12.7 KB
/
DuelingDQNPrioritizedReplay.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
"""
The DQN improvement: Prioritized Experience Replay (based on https://arxiv.org/abs/1511.05952)
View more on 莫烦Python: https://morvanzhou.github.io/tutorials/
Using:
Tensorflow: 1.0
"""
import numpy as np
import tensorflow as tf
np.random.seed(1)
tf.set_random_seed(1)
class SumTree(object):
"""
This SumTree code is modified version and the original code is from:
https://github.com/jaara/AI-blog/blob/master/SumTree.py
Story the data with it priority in tree and data frameworks.
"""
data_pointer = 0
def __init__(self, capacity):
self.capacity = capacity # for all priority values
self.tree = np.zeros(2 * capacity - 1)
# [--------------Parent nodes-------------][-------leaves to recode priority-------]
# size: capacity - 1 size: capacity
self.data = np.zeros(capacity, dtype=object) # for all transitions
# [--------------data frame-------------]
# size: capacity
def add_new_priority(self, p, data):
leaf_idx = self.data_pointer + self.capacity - 1
self.data[self.data_pointer] = data # update data_frame
self.update(leaf_idx, p) # update tree_frame
self.data_pointer += 1
if self.data_pointer >= self.capacity: # replace when exceed the capacity
self.data_pointer = 0
def update(self, tree_idx, p):
change = p - self.tree[tree_idx]
self.tree[tree_idx] = p
self._propagate_change(tree_idx, change)
def _propagate_change(self, tree_idx, change):
"""change the sum of priority value in all parent nodes"""
parent_idx = (tree_idx - 1) // 2
self.tree[parent_idx] += change
if parent_idx != 0:
self._propagate_change(parent_idx, change)
def get_leaf(self, lower_bound):
leaf_idx = self._retrieve(lower_bound) # search the max leaf priority based on the lower_bound
data_idx = leaf_idx - self.capacity + 1
return [leaf_idx, self.tree[leaf_idx], self.data[data_idx]]
def _retrieve(self, lower_bound, parent_idx=0):
"""
Tree structure and array storage:
Tree index:
0 -> storing priority sum
/ \
1 2
/ \ / \
3 4 5 6 -> storing priority for transitions
Array type for storing:
[0,1,2,3,4,5,6]
"""
left_child_idx = 2 * parent_idx + 1
right_child_idx = left_child_idx + 1
if left_child_idx >= len(self.tree): # end search when no more child
return parent_idx
if self.tree[left_child_idx] == self.tree[right_child_idx]:
return self._retrieve(lower_bound, np.random.choice([left_child_idx, right_child_idx]))
if lower_bound <= self.tree[left_child_idx]: # downward search, always search for a higher priority node
return self._retrieve(lower_bound, left_child_idx)
else:
return self._retrieve(lower_bound - self.tree[left_child_idx], right_child_idx)
@property
def root_priority(self):
return self.tree[0] # the root
class Memory(object): # stored as ( s, a, r, s_ ) in SumTree
"""
This SumTree code is modified version and the original code is from:
https://github.com/jaara/AI-blog/blob/master/Seaquest-DDQN-PER.py
"""
epsilon = 0.001 # small amount to avoid zero priority
alpha = 0.6 # [0~1] convert the importance of TD error to priority
beta = 0.4 # importance-sampling, from initial value increasing to 1
beta_increment_per_sampling = 1e-4 # annealing the bias
abs_err_upper = 1 # for stability refer to paper
def __init__(self, capacity):
self.tree = SumTree(capacity)
def store(self, error, transition):
p = self._get_priority(error)
self.tree.add_new_priority(p, transition)
def sample(self, n):
batch_idx, batch_memory, ISWeights = [], [], []
segment = self.tree.root_priority / n
self.beta = np.min([1, self.beta + self.beta_increment_per_sampling]) # max = 1
min_prob = np.min(self.tree.tree[-self.tree.capacity:]) / self.tree.root_priority
maxiwi = np.power(self.tree.capacity * min_prob, -self.beta) # for later normalizing ISWeights
for i in range(n):
a = segment * i
b = segment * (i + 1)
lower_bound = np.random.uniform(a, b)
idx, p, data = self.tree.get_leaf(lower_bound)
prob = p / self.tree.root_priority
ISWeights.append(self.tree.capacity * prob)
batch_idx.append(idx)
batch_memory.append(data)
ISWeights = np.vstack(ISWeights)
ISWeights = np.power(ISWeights, -self.beta) / maxiwi # normalize
return batch_idx, np.vstack(batch_memory), ISWeights
def update(self, idx, error):
p = self._get_priority(error)
self.tree.update(idx, p)
def _get_priority(self, error):
error += self.epsilon # avoid 0
clipped_error = np.clip(error, 0, self.abs_err_upper)
return np.power(clipped_error, self.alpha)
class DuelingDQNPrioritizedReplay:
def __init__(
self,
n_actions,
n_features,
learning_rate=0.005,
reward_decay=0.9,
e_greedy=0.9,
replace_target_iter=500,
memory_size=10000,
batch_size=32,
e_greedy_increment=None,
hidden=[100, 50],
output_graph=False,
sess=None,
):
self.n_actions = n_actions
self.n_features = n_features
self.lr = learning_rate
self.gamma = reward_decay
self.epsilon_max = e_greedy
self.replace_target_iter = replace_target_iter
self.memory_size = memory_size
self.batch_size = batch_size
self.hidden = hidden
self.epsilon_increment = e_greedy_increment
self.epsilon = 0.5 if e_greedy_increment is not None else self.epsilon_max
self.learn_step_counter = 0
self._build_net()
self.memory = Memory(capacity=memory_size)
if sess is None:
self.sess = tf.Session()
self.sess.run(tf.global_variables_initializer())
else:
self.sess = sess
if output_graph:
tf.summary.FileWriter("logs/", self.sess.graph)
self.cost_his = []
def _build_net(self):
def build_layers(s, c_names, w_initializer, b_initializer):
for i, h in enumerate(self.hidden):
if i == 0:
in_units, out_units, inputs = self.n_features, self.hidden[i], s
else:
in_units, out_units, inputs = self.hidden[i-1], self.hidden[i], l
with tf.variable_scope('l%i' % i):
w = tf.get_variable('w', [in_units, out_units], initializer=w_initializer, collections=c_names)
b = tf.get_variable('b', [1, out_units], initializer=b_initializer, collections=c_names)
l = tf.nn.relu(tf.matmul(inputs, w) + b)
with tf.variable_scope('Value'):
w = tf.get_variable('w', [self.hidden[-1], 1], initializer=w_initializer, collections=c_names)
b = tf.get_variable('b', [1, 1], initializer=b_initializer, collections=c_names)
self.V = tf.matmul(l, w) + b
with tf.variable_scope('Advantage'):
w = tf.get_variable('w', [self.hidden[-1], self.n_actions], initializer=w_initializer, collections=c_names)
b = tf.get_variable('b', [1, self.n_actions], initializer=b_initializer, collections=c_names)
self.A = tf.matmul(l, w) + b
with tf.variable_scope('Q'):
out = self.V + (self.A - tf.reduce_mean(self.A, axis=1, keep_dims=True)) # Q = V(s) + A(s,a)
# with tf.variable_scope('out'):
# w = tf.get_variable('w', [self.hidden[-1], self.n_actions], initializer=w_initializer, collections=c_names)
# b = tf.get_variable('b', [1, self.n_actions], initializer=b_initializer, collections=c_names)
# out = tf.matmul(l, w) + b
return out
# ------------------ build evaluate_net ------------------
self.s = tf.placeholder(tf.float32, [None, self.n_features], name='s') # input
self.q_target = tf.placeholder(tf.float32, [None, self.n_actions], name='Q_target') # for calculating loss
self.ISWeights = tf.placeholder(tf.float32, [None, 1], name='IS_weights')
with tf.variable_scope('eval_net'):
c_names, w_initializer, b_initializer = \
['eval_net_params', tf.GraphKeys.GLOBAL_VARIABLES], \
tf.random_normal_initializer(0., 0.01), tf.constant_initializer(0.01) # config of layers
self.q_eval = build_layers(self.s, c_names, w_initializer, b_initializer)
with tf.variable_scope('loss'):
self.abs_errors = tf.abs(tf.reduce_sum(self.q_target - self.q_eval, axis=1)) # for updating Sumtree
self.loss = tf.reduce_mean(self.ISWeights * tf.squared_difference(self.q_target, self.q_eval))
with tf.variable_scope('train'):
self._train_op = tf.train.AdamOptimizer(self.lr).minimize(self.loss)
# ------------------ build target_net ------------------
self.s_ = tf.placeholder(tf.float32, [None, self.n_features], name='s_') # input
with tf.variable_scope('target_net'):
c_names = ['target_net_params', tf.GraphKeys.GLOBAL_VARIABLES]
self.q_next = build_layers(self.s_, c_names, w_initializer, b_initializer)
def store_transition(self, s, a, r, s_):
transition = np.hstack((s, [a, r], s_))
max_p = np.max(self.memory.tree.tree[-self.memory.tree.capacity:])
self.memory.store(max_p, transition)
def choose_action(self, observation):
observation = observation[np.newaxis, :]
if np.random.uniform() < self.epsilon:
actions_value = self.sess.run(self.q_eval, feed_dict={self.s: observation})
action = np.argmax(actions_value)
else:
action = np.random.randint(0, self.n_actions)
return action
def _replace_target_params(self):
t_params = tf.get_collection('target_net_params')
e_params = tf.get_collection('eval_net_params')
self.sess.run([tf.assign(t, e) for t, e in zip(t_params, e_params)])
def learn(self):
if self.learn_step_counter % self.replace_target_iter == 0:
self._replace_target_params()
tree_idx, batch_memory, ISWeights = self.memory.sample(self.batch_size)
# double DQN
q_next, q_eval4next = self.sess.run(
[self.q_next, self.q_eval],
feed_dict={self.s_: batch_memory[:, -self.n_features:], # next observation
self.s: batch_memory[:, -self.n_features:]}) # next observation
q_eval = self.sess.run(self.q_eval, {self.s: batch_memory[:, :self.n_features]})
q_target = q_eval.copy()
batch_index = np.arange(self.batch_size, dtype=np.int32)
eval_act_index = batch_memory[:, self.n_features].astype(int)
reward = batch_memory[:, self.n_features + 1]
max_act4next = np.argmax(q_eval4next,
axis=1) # the action that brings the highest value is evaluated by q_eval
selected_q_next = q_next[batch_index, max_act4next] # Double DQN, select q_next depending on above actions
q_target[batch_index, eval_act_index] = reward + self.gamma * selected_q_next
# q_next, q_eval = self.sess.run(
# [self.q_next, self.q_eval],
# feed_dict={self.s_: batch_memory[:, -self.n_features:],
# self.s: batch_memory[:, :self.n_features]})
#
# q_target = q_eval.copy()
# batch_index = np.arange(self.batch_size, dtype=np.int32)
# eval_act_index = batch_memory[:, self.n_features].astype(int)
# reward = batch_memory[:, self.n_features + 1]
#
# q_target[batch_index, eval_act_index] = reward + self.gamma * np.max(q_next, axis=1)
_, abs_errors, self.cost = self.sess.run([self._train_op, self.abs_errors, self.loss],
feed_dict={self.s: batch_memory[:, :self.n_features],
self.q_target: q_target,
self.ISWeights: ISWeights})
for i in range(len(tree_idx)): # update priority
idx = tree_idx[i]
self.memory.update(idx, abs_errors[i])
self.cost_his.append(self.cost)
self.epsilon = self.epsilon + self.epsilon_increment if self.epsilon < self.epsilon_max else self.epsilon_max
self.learn_step_counter += 1