Requirements
- Linux (Windows is not officially supported)
- Python 3.7+
- PyTorch 1.8 or higher
- CUDA 10.1 or higher
- NCCL 2
- GCC 4.9 or higher
Dependencies
- dask
- decord
- future
- fvcore
- hickle
- lpips
- matplotlib
- nni
- netcdf4
- numpy
- opencv-python
- packaging
- pandas
- scikit-image<=0.19.3
- six
- scikit-learn
- timm>=0.5.4,<=0.6.11
- torch
- torchvision
- tqdm
- xarray==0.19.0
git clone https://github.com/zhenglab/ST-SSPL-AVP
Install the corresponding versions of Python and PyTorch, and also setup the conda environment.
conda env create -f environment.yml
conda activate st_sspl_avp
python setup.py develop
-
Download the corresponding datasets of ERA5 via WeatherBench Github Repo.
-
Unzip and copy the dataset files to
$ST-SSPL-AVP/data
directory as following shows:
ST-SSPL-AVP
├── configs
└── data
|── weather
| ├── 2m_temperature
| ├── 10m_u_component_of_wind
| ├── 10m_v_component_of_wind
| ├── relative_humidity
| ├── total_cloud_cover