-
Notifications
You must be signed in to change notification settings - Fork 4
/
update_nowcast.m
651 lines (510 loc) · 21.7 KB
/
update_nowcast.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
function update_nowcast(X_old,X_new,Time,Spec,Res,series,period,vintage_old,vintage_new)
if ~isnumeric(vintage_old)
vintage_old = datenum(vintage_old,'yyyy-mm-dd');
end
if ~isnumeric(vintage_new)
vintage_new = datenum(vintage_new,'yyyy-mm-dd');
end
% Make sure datasets are the same size
N = size(X_new,2);
T_old = size(X_old,1); T_new = size(X_new,1);
if T_new > T_old
X_old = [X_old; NaN(T_new-T_old,N)];
end
% append 1 year (12 months) of data to each dataset to allow for
% forecasting at different horizons
X_old = [X_old; NaN(12,N)];
X_new = [X_new; NaN(12,N)];
[y, m, d] = datevec(Time(end));
Time = [Time; datenum(y,(m+1:m+12)',d)];
i_series = find(strcmp(series,Spec.SeriesID));
series_name = Spec.SeriesName{i_series};
freq = Spec.Frequency{i_series};
switch freq
case 'm'
[y,m] = strtok(period,freq);
y = str2double(y);
m = str2double(strrep(m,freq,''));
d = 1;
t_nowcast = find(Time==datenum(y,m,d));
case 'q'
[y,q] = strtok(period,freq);
y = str2double(y);
q = str2double(strrep(q,freq,''));
m = 3*q;
d = 1;
t_nowcast = find(Time==datenum(y,m,d));
end
if isempty(t_nowcast)
error('Period is out of nowcasting horizon (up to one year ahead).');
end
% Update nowcast for target variable 'series' (i) at horizon 'period' (t)
% > Relate nowcast update into news from data releases:
% a. Compute the impact from data revisions
% b. Compute the impact from new data releases
X_rev = X_new;
X_rev(isnan(X_old)) = NaN;
% Compute news --------------------------------------------------------
% Compute impact from data revisions
[y_old] = News_DFM(X_old,X_rev,Res,t_nowcast,i_series);
% Compute impact from data releases
[y_rev,y_new,~,actual,forecast,weight] = News_DFM(X_rev,X_new,Res,t_nowcast,i_series);
% Display output
fprintf('\n\n\n');
fprintf('Nowcast Update: %s \n', datestr(vintage_new, 'mmmm dd, yyyy'))
fprintf('Nowcast for %s (%s), %s \n',Spec.SeriesName{i_series},Spec.UnitsTransformed{i_series},datestr(Time(t_nowcast),'YYYY:QQ'));
if(isempty(forecast)) % Only display table output if a forecast is made
fprintf('\n No forecast was made.\n')
else
impact_revisions = y_rev - y_old; % Impact from revisions
news = actual - forecast; % News from releases
impact_releases = weight .* (news); % Impact of releases
% Store results
news_table = array2table([forecast, actual, weight, impact_releases],...
'VariableNames', {'Forecast', 'Actual', 'Weight', 'Impact'},...
'RowNames', Spec.SeriesID);
% Select only series with updates
data_released = any(isnan(X_old) & ~isnan(X_new), 1);
% Display the impact decomposition
fprintf('\n Nowcast Impact Decomposition \n')
fprintf(' Note: The displayed output is subject to rounding error\n\n')
fprintf(' %s nowcast: %5.2f\n', ...
datestr(vintage_old, 'mmm dd'), y_old)
fprintf(' Impact from data revisions: %5.2f\n', impact_revisions)
fprintf(' Impact from data releases: %5.2f\n', sum(news_table.Impact,'omitnan'))
fprintf(' +_________\n')
fprintf(' Total impact: %5.2f\n', ...
impact_revisions + sum(news_table.Impact,'omitnan'))
fprintf(' %s nowcast: %5.2f\n\n', ...
datestr(vintage_new, 'mmm dd'), y_new)
% Display the table output
fprintf('\n Nowcast Detail Table \n\n')
disp(news_table(data_released, :))
end
% Output results to structure
end
function [y_old,y_new,singlenews,actual,forecast,weight,t_miss,v_miss,innov] = News_DFM(X_old,X_new,Res,t_fcst,v_news)
%News_DFM() Calculates changes in news
%
% Syntax:
% [y_old, y_new, singlenews, actual, fore, weight ,t_miss, v_miss, innov] = ...
% News_DFM(X_old, X_new, Q, t_fcst, v_news)
%
% Description:
% News DFM() inputs two datasets, DFM parameters, target time index, and
% target variable index. The function then produces Nowcast updates and
% decomposes the changes into news.
%
% Input Arguments:
% X_old: Old data matrix (old vintage)
% X_new: New data matrix (new vintage)
% Res: DFM() output results (see DFM for more details)
% t_fcst: Index for target time
% v_news: Index for target variable
%
% Output Arguments:
% y_old: Old nowcast
% y_new: New nowcast
% single_news: News for each data series
% actual: Observed series release values
% fore: Forecasted series values
% weight: News weight
% t_miss: Time index for data releases
% v_miss: Series index for data releases
% innov: Difference between observed and predicted series values ("innovation")
%% Initialize variables
r = size(Res.C,2);
[~, N] = size(X_new);
singlenews = zeros(1,N); % Initialize news vector (will store news for each series)
%% NO FORECAST CASE: Already values for variables v_news at time t_fcst
if ~isnan(X_new(t_fcst,v_news))
Res_old = para_const(X_old, Res, 0); % Apply Kalman filter for old data
for i=1:size(v_news,2) % Loop for each target variable
% (Observed value) - (predicted value)
singlenews(:,v_news(i)) = X_new(t_fcst,v_news(i)) ...
- Res_old.X_sm(t_fcst,v_news(i));
% Set predicted and observed y values
y_old(1,i) = Res_old.X_sm(t_fcst,v_news(i));
y_new(1,i) = X_new(t_fcst,v_news(i));
end
% Forecast-related output set to empty
actual=[];forecast=[];weight=[];t_miss=[];v_miss=[];innov=[];
else
%% FORECAST CASE (these are broken down into (A) and (B))
% Initialize series mean/standard deviation respectively
Mx = Res.Mx;
Wx = Res.Wx;
% Calculate indicators for missing values (1 if missing, 0 otherwise)
miss_old=isnan(X_old);
miss_new=isnan(X_new);
% Indicator for missing--combine above information to single matrix where:
% (i) -1: Value is in the old data, but missing in new data
% (ii) 1: Value is in the new data, but missing in old data
% (iii) 0: Values are missing from/available in both datasets
i_miss = miss_old - miss_new;
% Time/variable indicies where case (b) is true
[t_miss,v_miss]=find(i_miss==1);
%% FORECAST SUBCASE (A): NO NEW INFORMATION
if isempty(v_miss)
% Fill in missing variables using a Kalman filter
Res_old = para_const(X_old, Res, 0);
Res_new = para_const(X_new, Res, 0);
% Set predicted and observed y values. New y value is set to old
y_old = Res_old.X_sm(t_fcst,v_news);
y_new = y_old;
% y_new = Res_new.X_sm(t_fcst,v_news);
% No news, so nothing returned for news-related output
groupnews=[];singlenews=[];gain=[];gainSer=[];
actual=[];forecast=[];weight=[];t_miss=[];v_miss=[];innov=[];
else
%----------------------------------------------------------------------
% v_miss=[1:size(X_new,2)]';
% t_miss=t_miss(1)*ones(size(X_new,2),1);
%----------------------------------------------------------------------
%% FORECAST SUBCASE (B): NEW INFORMATION
% Difference between forecast time and new data time
lag = t_fcst-t_miss;
% Gives biggest time interval between forecast and new data
k = max([abs(lag); max(lag)-min(lag)]);
C = Res.C; % Observation matrix
R = Res.R'; % Covariance for observation matrix residuals
% Number of new events
n_news = size(lag,1);
% Smooth old dataset
Res_old = para_const(X_old, Res, k);
Plag = Res_old.Plag;
% Smooth new dataset
Res_new = para_const(X_new, Res, 0);
% Subset for target variable and forecast time
y_old = Res_old.X_sm(t_fcst,v_news);
y_new = Res_new.X_sm(t_fcst,v_news);
P = Res_old.P(:,:,2:end);
P1=[]; % Initialize projection onto updates
% Cycle through total number of updates
for i=1:n_news
h = abs(t_fcst-t_miss(i));
m = max([t_miss(i) t_fcst]);
% If location of update is later than the forecasting date
if t_miss(i)>t_fcst
Pp=Plag{h+1}(:,:,m); %P(1:r,h*r+1:h*r+r,m)';
else
Pp=Plag{h+1}(:,:,m)'; %P(1:r,h*r+1:h*r+r,m);
end
P1=[P1 Pp*C(v_miss(i),1:r)']; % Projection on updates
end
for i=1:size(t_miss,1)
% Standardize predicted and observed values
X_new_norm = (X_new(t_miss(i),v_miss(i)) - Mx(v_miss(i)))./Wx(v_miss(i));
X_sm_norm = (Res_old.X_sm(t_miss(i),v_miss(i))- Mx(v_miss(i)))./Wx(v_miss(i));
% Innovation: Gives [observed] data - [predicted data]
innov(i)= X_new_norm - X_sm_norm;
end
ins=size(innov,2);
P2=[];
p2=[];
% Gives non-standardized series weights
for i=1:size(lag,1)
for j=1:size(lag,1)
h=abs(lag(i)-lag(j));
m=max([t_miss(i),t_miss(j)]);
if t_miss(j)>t_miss(i)
Pp=Plag{h+1}(:,:,m); %P(1:r,h*r+1:(h+1)*r,m)';
else
Pp=Plag{h+1}(:,:,m)'; %P(1:r,h*r+1:(h+1)*r,m);
end
if v_miss(i)==v_miss(j) & t_miss(i)~=t_miss(j)
WW(v_miss(i),v_miss(j))=0;
else
WW(v_miss(i),v_miss(j))=R(v_miss(i),v_miss(j));
end
p2=[p2 C(v_miss(i),1:r)*Pp*C(v_miss(j),1:r)'+WW(v_miss(i),v_miss(j))];
end
P2=[P2;p2];
p2=[];
end
clear temp
for i=1:size(v_news,2) % loop on v_news
% Convert to real units (unstadardized data)
totnews(1,i) = Wx(v_news(i))*C(v_news(i),1:r)*P1*inv(P2)*innov';
temp(1,:,i) = Wx(v_news(i))*C(v_news(i),1:r)*P1*inv(P2).*innov;
gain(:,:,i) = Wx(v_news(i))*C(v_news(i),1:r)*P1*inv(P2);
end
% Initialize output objects
singlenews = NaN(max(t_miss)-min(t_miss)+1,N); %,size(v_news,2)
actual = NaN(N,1); % Actual forecasted values
forecast = NaN(N,1); % Forecasted values
weight = NaN(N,1,size(v_news,2));
% Fill in output values
for i=1:size(innov,2)
actual(v_miss(i),1) = X_new(t_miss(i),v_miss(i));
forecast(v_miss(i),1) = Res_old.X_sm(t_miss(i),v_miss(i));
for j=1:size(v_news,2)
singlenews(t_miss(i)-min(t_miss)+1,v_miss(i),j) = temp(1,i,j);
weight(v_miss(i),:,j) = gain(:,i,j)/Wx(v_miss(i));
end
end
singlenews = sum(singlenews,1); % Returns total news
[v_miss, ~, ~] = unique(v_miss);
end
end
end
function Res = para_const(X, P, lag)
%para_const() Implements Kalman filter for "News_DFM.m"
%
% Syntax:
% Res = para_const(X,P,lag)
%
% Description:
% para_const() implements the Kalman filter for the news calculation
% step. This procedure smooths and fills in missing data for a given
% data matrix X. In contrast to runKF(), this function is used when
% model parameters are already estimated.
%
% Input parameters:
% X: Data matrix.
% P: Parameters from the dynamic factor model.
% lag: Number of lags
%
% Output parameters:
% Res [struc]: A structure containing the following:
% Res.Plag: Smoothed factor covariance for transition matrix
% Res.P: Smoothed factor covariance matrix
% Res.X_sm: Smoothed data matrix
% Res.F: Smoothed factors
%
% Kalman filter with specified paramaters
% written for
% "MAXIMUM LIKELIHOOD ESTIMATION OF FACTOR MODELS ON DATA SETS WITH
% ARBITRARY PATTERN OF MISSING DATA."
% by Marta Banbura and Michele Modugno
%% Set model parameters and data preparation
% Set model parameters
Z_0 = P.Z_0;
V_0 = P.V_0;
A = P.A;
C = P.C;
Q = P.Q;
R = P.R;
Mx = P.Mx;
Wx = P.Wx;
% Prepare data
[T,~] = size(X);
% Standardise x
Y = ((X-repmat(Mx,T,1))./repmat(Wx,T,1))';
%% Apply Kalman filter and smoother
% See runKF() for details about FIS and SKF
Sf = SKF(Y, A, C, Q, R, Z_0, V_0); % Kalman filter
Ss = FIS(A, Sf); % Smoothing step
%% Calculate parameter output
Vs = Ss.VmT(:,:,2:end); % Smoothed factor covariance for transition matrix
Vf = Sf.VmU(:,:,2:end); % Filtered factor posterior covariance
Zsmooth = Ss.ZmT; % Smoothed factors
Vsmooth = Ss.VmT; % Smoothed covariance values
Plag{1} = Vs;
for jk = 1:lag
for jt = size(Plag{1},3):-1:lag+1
As = Vf(:,:,jt-jk)*A'*pinv(A*Vf(:,:,jt-jk)*A'+Q);
Plag{jk+1}(:,:,jt) = As*Plag{jk}(:,:,jt);
end
end
% Prepare data for output
Zsmooth=Zsmooth';
x_sm = Zsmooth(2:end,:)*C'; % Factors to series representation
X_sm = repmat(Wx,T,1).*x_sm+repmat(Mx,T,1); % Standardized to unstandardized
%--------------------------------------------------------------------------
% Loading the structure with the results
%--------------------------------------------------------------------------
Res.Plag = Plag;
Res.P = Vsmooth;
Res.X_sm = X_sm;
Res.F = Zsmooth(2:end,:);
end
%______________________________________________________________________
function S = SKF(Y, A, C, Q, R, Z_0, V_0)
%SKF Applies Kalman filter
%
% Syntax:
% S = SKF(Y, A, C, Q, R, Z_0, V_0)
%
% Description:
% SKF() applies a Kalman filter. This is a bayesian algorithm. Looping
% forward in time, a 'prior' estimate is calculated from the previous
% period. Then, using the observed data, a 'posterior' value is obtained.
%
% Input parameters:
% y: Input data.
% A: Transition matrix coefficients.
% C: Observation matrix coefficients.
% Q: Covariance matrix (factors and idiosyncratic component)
% R: Variance-Covariance for observation equation residuals
% Z_0: Initial factor values
% V_0: Initial factor covariance matrix
%
% Output parameters:
% S.Zm: Prior/predicted factor state vector (Z_t|t-1)
% S.ZmU: Posterior/updated state vector (Z_t|t)
% S.Vm: Prior/predicted covariance of factor state vector (V_t|t-1)
% S.VmU: Posterior/updated covariance of factor state vector (V_t|t)
% S.loglik: Value of likelihood function
% S.k_t: Kalman gain
%
% Model:
% Y_t = C_t Z_t + e_t, e_t ~ N(0, R)
% Z_t = A Z_{t-1} + mu_t, mu_t ~ N(0, Q)
%% INSTANTIATE OUTPUT VALUES ---------------------------------------------
% Output structure & dimensions of state space matrix
[~, m] = size(C);
% Outputs time for data matrix. "number of observations"
nobs = size(Y,2);
% Initialize output
S.Zm = NaN(m, nobs); % Z_t | t-1 (prior)
S.Vm = NaN(m, m, nobs); % V_t | t-1 (prior)
S.ZmU = NaN(m, nobs+1); % Z_t | t (posterior/updated)
S.VmU = NaN(m, m, nobs+1); % V_t | t (posterior/updated)
S.loglik = 0;
%% SET INITIAL VALUES ----------------------------------------------------
Zu = Z_0; % Z_0|0 (In below loop, Zu gives Z_t | t)
Vu = V_0; % V_0|0 (In below loop, Vu guvse V_t | t)
% Store initial values
S.ZmU(:,1) = Zu;
S.VmU(:,:,1) = Vu;
%% KALMAN FILTER PROCEDURE ----------------------------------------------
for t = 1:nobs
%%% CALCULATING PRIOR DISTIBUTION----------------------------------
% Use transition eqn to create prior estimate for factor
% i.e. Z = Z_t|t-1
Z = A * Zu;
% Prior covariance matrix of Z (i.e. V = V_t|t-1)
% Var(Z) = Var(A*Z + u_t) = Var(A*Z) + Var(\epsilon) =
% A*Vu*A' + Q
V = A * Vu* A' + Q;
V = 0.5 * (V+V'); % Trick to make symmetric
%%% CALCULATING POSTERIOR DISTRIBUTION ----------------------------
% Removes missing series: These are removed from Y, C, and R
[Y_t, C_t, R_t, ~] = MissData(Y(:,t), C, R);
% Check if y_t contains no data. If so, replace Zu and Vu with prior.
if isempty(Y_t)
Zu = Z;
Vu = V;
else
% Steps for variance and population regression coefficients:
% Var(c_t*Z_t + e_t) = c_t Var(A) c_t' + Var(u) = c_t*V *c_t' + R
VC = V * C_t';
iF = inv(C_t * VC + R_t);
% Matrix of population regression coefficients (QuantEcon eqn #4)
VCF = VC*iF;
% Gives difference between actual and predicted observation
% matrix values
innov = Y_t - C_t*Z;
% Update estimate of factor values (posterior)
Zu = Z + VCF * innov;
% Update covariance matrix (posterior) for time t
Vu = V - VCF * VC';
Vu = 0.5 * (Vu+Vu'); % Approximation trick to make symmetric
% Update log likelihood
S.loglik = S.loglik + 0.5*(log(det(iF)) - innov'*iF*innov);
end
%%% STORE OUTPUT----------------------------------------------------
% Store covariance and observation values for t-1 (priors)
S.Zm(:,t) = Z;
S.Vm(:,:,t) = V;
% Store covariance and state values for t (posteriors)
% i.e. Zu = Z_t|t & Vu = V_t|t
S.ZmU(:,t+1) = Zu;
S.VmU(:,:,t+1) = Vu;
end
% Store Kalman gain k_t
if isempty(Y_t)
S.k_t = zeros(m,m);
else
S.k_t = VCF * C_t;
end
end
%______________________________________________________________________
function S = FIS(A, S)
%FIS() Applies fixed-interval smoother
%
% Syntax:
% S = FIS(A, S)
%
% Description:
% SKF() applies a fixed-interval smoother, and is used in conjunction
% with SKF(). Starting from the final value, this uses a set of
% recursions and works backwards. Smoothers are advantageous in that
% future values are used for estimation. See page 154 of 'Forecasting,
% structural time series models and the Kalman filter' for more details
% (Harvey, 1990).
%
% Input parameters:
% A: Transition matrix coefficients.
% S: Output from SKF() step. See SKF() for details.
%
% Output parameters:
% S: In addition to the output from SKF(), FIS() adds the following
% smoothed estimates. Note that t = 1...T gives time:
% - S.ZmT: Smoothed estimate of factor values (Z_t|T)
% - S.VmT: Smoothed estimate of factor covariance matrix (V_t|T = Cov(Z_t|T))
% - S.VmT_1: Smoothed estimate of Lag 1 factor covariance matrix (Cov(Z_tZ_t-1|T))
%
% Model:
% Y_t = C_t Z_t + e_t for e_t ~ N(0, R)
% Z_t = A Z_{t-1} + mu_t for mu_t ~ N(0, Q)
%% ORGANIZE INPUT ---------------------------------------------------------
% Initialize output matrices
[m, nobs] = size(S.Zm);
S.ZmT = zeros(m,nobs+1);
S.VmT = zeros(m,m,nobs+1);
% Fill the final period of ZmT, VmT with SKF() posterior values
S.ZmT(:,nobs+1) = squeeze(S.ZmU(:, nobs+1));
S.VmT(:,:,nobs+1) = squeeze(S.VmU(:,:, nobs+1));
% Initialize VmT_1 lag 1 covariance matrix for final period
S.VmT_1(:,:,nobs) = (eye(m)-S.k_t) *A*squeeze(S.VmU(:,:,nobs));
% Used for recursion process. See companion file for details
J_2 = squeeze(S.VmU(:,:,nobs)) * A' * pinv(squeeze(S.Vm(:,:,nobs)));
%% RUN SMOOTHING ALGORITHM ----------------------------------------------
% Loop through time reverse-chronologically (starting at final period nobs)
for t = nobs:-1:1
% Store posterior and prior factor covariance values
VmU = squeeze(S.VmU(:,:,t));
Vm1 = squeeze(S.Vm(:,:,t));
% Store previous period smoothed factor covariance and lag-1 covariance
V_T = squeeze(S.VmT(:,:,t+1));
V_T1 = squeeze(S.VmT_1(:,:,t));
J_1 = J_2;
% Update smoothed factor estimate
S.ZmT(:,t) = S.ZmU(:,t) + J_1 * (S.ZmT(:,t+1) - A * S.ZmU(:,t)) ;
% Update smoothed factor covariance matrix
S.VmT(:,:,t) = VmU + J_1 * (V_T - Vm1) * J_1';
if t>1
% Update weight
J_2 = squeeze(S.VmU(:, :, t-1)) * A' * pinv(squeeze(S.Vm(:,:,t-1)));
% Update lag 1 factor covariance matrix
S.VmT_1(:,:,t-1) = VmU * J_2'+J_1 * (V_T1 - A * VmU) * J_2';
end
end
end
function [y,C,R,L] = MissData(y,C,R)
%______________________________________________________________________
% PROC missdata
% PURPOSE: eliminates the rows in y & matrices Z, G that correspond to
% missing data (NaN) in y
% INPUT y vector of observations at time t
% S KF system matrices (structure)
% must contain Z & G
% OUTPUT y vector of observations (reduced)
% Z G KF system matrices (reduced)
% L To restore standard dimensions
% where # is the nr of available data in y
%______________________________________________________________________
% Returns 1 for nonmissing series
ix = ~isnan(y);
% Index for columns with nonmissing variables
e = eye(size(y,1));
L = e(:,ix);
% Removes missing series
y = y(ix);
% Removes missing series from observation matrix
C = C(ix,:);
% Removes missing series from transition matrix
R = R(ix,ix);
end