-
Notifications
You must be signed in to change notification settings - Fork 1
/
load_and_test_models.py
458 lines (422 loc) · 23.6 KB
/
load_and_test_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
import os
import re
import sys
import time
import math
import datetime
import numpy as np
from collections import defaultdict
from cuda_utils import dynamic_cuda_allocation
dynamic_cuda_allocation()
import importlib
import argparse
import torch
import torch.nn.functional as F
from torch import nn, optim
from tqdm import tqdm
from data import MonoTextData
from utils import uniform_initializer, calc_mi, calc_au
from utils import visualize2D_posterior_distribution
from modules.utils import log_sum_exp, exp_mean_log
from modules.encoders.utils import GaussianPDF, LogGaussianPDF
from experiment import init_config, create_model, test
from local_info import machine_name
metric_names_lm = ["loss_eval", "elbo", "kl", "okl", "logp_prior", "logp_post", "mi", "au"]
CU_thresh = [0.01, 0.03, 0.05, 0.1] # we report the results of 0.03 in paper for better comparison
metric_names_latent = ["joint-kl"] + [f"CU({thresh})" for thresh in CU_thresh]
def check_args(args):
"""
jsut check wether the log.txt under such directories ended with "FINAL-TEST",
so as to find those directories with their experiments interrupted.
"""
log_path = args.save_path.replace("model.pt", "log.txt")
try:
with open(log_path, 'r') as f:
content = f.read()
except FileNotFoundError:
return False
lines = content.split("\n")
final_test_finished = any(["FINAL-TEST" in line for line in lines])
return final_test_finished
def get_args_status(args):
log_path = args.save_path.replace("model.pt", "log.txt")
exist_flag = os.path.exists(log_path)
create_time = time.mktime(time.strptime(
re.match("This experiement started at: (.*) on: .*",
open(log_path,'r').readlines()[0]).group(1), '%c')) if exist_flag else None
modify_time = max(os.stat(log_path).st_mtime, create_time) if exist_flag else None
active_flag = exist_flag and (time.time() - modify_time < 600)
complete_flag = check_args(args)
return complete_flag, active_flag, exist_flag, log_path, create_time, modify_time
def display_args_status(args):
complete_flag, active_flag, exist_flag, log_path, create_time, modify_time = get_args_status(args)
print(f"{'complete' if complete_flag else 'incomplete'} {'-'*5 if complete_flag else '-'*3} "
f"{log_path+' '*max(0,(48-len(log_path)))}" \
f"\t{time.ctime(create_time) if exist_flag else '???'}" \
f" -> {time.ctime(modify_time) if complete_flag else ('active' if active_flag else '???')}" \
f" : {str(datetime.timedelta(seconds=int(modify_time-create_time))) if exist_flag else '--:--:--'}")
return complete_flag, active_flag, exist_flag, log_path, create_time, modify_time
def clear_output():
if 'ipykernel' in sys.modules:
from IPython.display import clear_output as clear
clear()
else:
os.system('cls' if os.name == 'nt' else 'clear')
return
def block_until_all_complete(args_specifications, interval=60):
args_list = [init_config(args_specification) for args_specification in args_specifications]
try:
while True:
clear_output()
print(f"{time.ctime()} - {machine_name}")
complete_flags = [display_args_status(args)[0] for args in args_list]
if all(complete_flags):
break
else:
time.sleep(interval)
except KeyboardInterrupt:
print("stop waiting for these experiments to complete")
return False
return True
def test_preparation(args_specification, args=None):
""" preparation for testing a model:
1. args
2. model
3. data + vocab
"""
if args is None:
args = init_config(args_specification)
args.device = "cuda" if args.cuda else "cpu"
train_data = MonoTextData(args.train_data, label=args.label)
vocab = train_data.vocab
val_data = MonoTextData(args.val_data, label=args.label, vocab=vocab)
test_data = MonoTextData(args.test_data, label=args.label, vocab=vocab)
model = create_model(args, vocab)
model.load_state_dict(torch.load(args.save_path))
model.eval()
return args, model, (train_data, val_data, test_data), vocab
@torch.no_grad()
def get_encodings(args_specification, tp=None, encoded_data="test", verbose=0):
args, model, (train_data, val_data, test_data), vocab = test_preparation(args_specification) if tp is None else tp
if not model.encoder.useGaussian and False: # why not ?
return args, None, None, None, None
data = {"train": train_data, "val": val_data, "test": test_data}[encoded_data]
data_batch = data.create_data_batch(
batch_size=args.batch_size, device=args.device, batch_first=True)
list_mean, list_logvar, list_textids = [], [], []
bar = tqdm(data_batch) if verbose else data_batch
for batch_data in bar:
batch_size, seq_len = batch_data.shape
mean, logvar = model.encoder.input_to_posterior(batch_data)
list_mean.append(mean.cpu().numpy())
list_logvar.append(logvar.cpu().numpy())
list_textids += batch_data.tolist()
all_mean = np.concatenate(list_mean, axis=0)
all_logvar = np.concatenate(list_logvar, axis=0)
all_textids = list_textids
return args, all_mean, all_logvar, all_textids, vocab
def visualize_args_latent_space(args_specification, pltm, select_axis, mode, mask_area=None, sort_key=None, verbose=1, model_name=None, dataset=None):
encodings = get_encodings(args_specification)
args, all_mean, all_logvar, all_textids, vocab = encodings
if any([_ is None for _ in [all_mean, all_logvar, all_textids, vocab]]):
print(f"Not a gaussian model: {args.model_name}")
return
for sa,md in [(sa,md) for sa in select_axis for md in mode]:
ax = pltm.subplot()
visualize2D_posterior_distribution(all_mean, all_logvar, pltm.plt, ax, md, sa, mask_area)
if verbose:
pltm.plt.text(0, 1, f" {args.model_name}", size = 10,
family = "fantasy", color = "black", style = "italic", weight = "light",
ma = 'left', ha = 'left', va = "bottom", transform=ax.transAxes)
pltm.plt.text(0, 1, f" {args.dataset}", size = 10, rotation=-90,
family = "fantasy", color = "black", style = "italic", weight = "light",
ma = 'left', ha = 'right', va = "top", transform=ax.transAxes)
elif dataset is None:
pltm.plt.title(model_name if model_name else args.model_name, fontsize=18)
else:
pltm.plt.title(f"{dataset} - {model_name}", fontsize=15)
torch.cuda.empty_cache()
if sort_key is not None and len(select_axis)==1 and type(select_axis[0]) is tuple:
# mask an area in specific dimensions and output the corresponding sentences in specific order
# empirically, it demonstrates the phenomenon that
# the most active unit in vanilla vae is highly relevant to the length of sentence
if mask_area is None:
mask_area = lambda xy:True # print all samples
num_all_text = all_mean.shape[0]
masked_samples = []
for i in range(all_mean.shape[0]):
mu_x, mu_y = all_mean[i,select_axis[0][0]], all_mean[i,select_axis[0][1]]
if not mask_area((mu_x, mu_y)):
continue
masked_samples.append((i, mu_x, mu_y))
masked_samples = sorted(masked_samples, key=lambda ixy:sort_key((ixy[1],ixy[2])))
masked_texts = vocab.decode_sentences([all_textids[i] for i,_,_ in masked_samples])
else:
masked_texts = None
return masked_texts
@torch.no_grad()
def test_kl_hole(args_specification, tp=None, encodings=None, times_sampling=1000, samples_per_sampling=128, rt_unit_info=False):
""" for gaussian latent models, estimate:
1. joint_kl: E_{z \sim p(z)} [logp(z)-logq(z)]
2. marginal_kl: E_{z_i \sim p(z_i)} [logp(z_i)-logq(z_i)] for i in range(dim_z)
3. covariance: Var_{x \sim D} [q(z_i|x).mean]
if rt_unit_info is True, return unit-wised marginal_kl and covariance
else (default), return joint_kl and CU
"""
if encodings is None:
encodings = get_encodings(args_specification, tp=tp)
args, all_mean, all_logvar, all_textids, vocab = encodings
assert "Gaussian" in args.encoder_class, "this method only supports Gaussian latent models"
all_mean, all_logvar = torch.tensor(all_mean).to(args.device), torch.tensor(all_logvar).to(args.device)
E_joint_kl, E_marginal_kl = [], []
with torch.no_grad():
for i in range(times_sampling):
z = torch.zeros(samples_per_sampling, args.dim_z).normal_().to(args.device)
# samples from prior for MC estimation: [samples_per_sampling, dim_z]
m_log_q_z = LogGaussianPDF(
all_mean, # [num_test_data, dim_z]
all_logvar, # [num_test_data, dim_z]
z.unsqueeze(0).repeat(all_mean.shape[0],1,1), # [num_test_data, samples_per_sampling, dim_z]
)
# the marginal log density in R: [num_test_data, samples_per_sampling, dim_z]
j_log_q_z = m_log_q_z.sum(dim=-1)
# the joint log density in R^dim_z: [num_test_data, samples_per_sampling]
m_log_aggq_z = exp_mean_log(m_log_q_z, dim=0) # [samples_per_sampling, dim_z]
j_log_aggq_z = exp_mean_log(j_log_q_z, dim=0) # [samples_per_sampling]
# averaged density along aggregation / across test datapoints
m_log_p_z = LogGaussianPDF(
torch.zeros_like(z), # [samples_per_sampling, dim_z]
torch.zeros_like(z), # [samples_per_sampling, dim_z]
z.unsqueeze(1) # [samples_per_sampling, 1, dim_z]
).squeeze(1)
# the marginal log density in R: [samples_per_sampling, dim_z]
j_log_p_z = m_log_p_z.sum(dim=-1)
# the joint log density in R^dim_z: [samples_per_sampling]
m_kl = m_log_p_z - m_log_aggq_z # [samples_per_sampling, dim_z]
j_kl = j_log_p_z - j_log_aggq_z # [samples_per_sampling]
E_marginal_kl.append(m_kl.mean(dim=0).tolist())
E_joint_kl.append(j_kl.mean(dim=0).tolist())
joint_kl = np.mean(E_joint_kl)
marginal_kl = np.mean(E_marginal_kl, axis=0).tolist()
variance_mean = torch.var(all_mean, dim=0).tolist()
if rt_unit_info:
return marginal_kl, variance_mean
continuous_units = [sum([i<thresh for i in marginal_kl]) for thresh in CU_thresh]
return {metric_name:metric_value for metric_name,metric_value in zip(metric_names_latent,[joint_kl]+continuous_units)}
@torch.no_grad()
def test_generation(args_specification, tp=None, num_intervals=10, mode="interpolation", erase=False, verbose=0):
tp = test_preparation(args_specification) if tp is None else tp
args, model, (train_data, val_data, test_data), vocab = tp
test_data = val_data if mode in ["devlpsampling"] else test_data
test_data_batch = test_data.create_data_batch(
batch_size=args.batch_size, device=args.device, batch_first=True)
if not model.encoder.useGaussian:
return
file_name, end_line = {
"interpolation":(f"{args.exp_dir}/interpolation.txt", "Interpolation Finished"),
"priorsampling":(f"{args.exp_dir}/priorsampling.txt", "Priorsampling Finished"),
}[mode]
if os.path.exists(file_name):
existing_lines = open(file_name).readlines()
if len(existing_lines)>0 and end_line in existing_lines[-1] and not erase:
return # already finished -> do nothing
with open(file_name, "w") as f:
f.write("") # incomplete -> erase and test again
content_output = ""
bar = tqdm(range(len(test_data_batch))) if verbose else range(len(test_data_batch))
for i in bar:
batch_data = test_data_batch[i]
batch_size, sent_len = batch_data.size()
if batch_size < 2:
continue
mean, logvar, z, loss_kld = model.encoder(batch_data)
if mode == "interpolation":
for j in range(int(batch_size/2)):
sample_a, sample_b = batch_data[j*2:j*2+1], batch_data[j*2+1:j*2+2]
# [1, dim_z]
mean_a, logvar_a = mean[j*2:j*2+1,:], logvar[j*2:j*2+1,:]
mean_b, logvar_b = mean[j*2+1:j*2+2,:], logvar[j*2+1:j*2+2,:]
# [num_intervals+1, 1]
pb = torch.tensor(np.arange(num_intervals+1)/num_intervals).float().unsqueeze(-1).cuda()
pa = 1-pb
# [num_intervals+1, dim_z]
means_a_to_b = torch.mm(pa,mean_a) + torch.mm(pb,mean_b)
logvar_a_to_b = torch.mm(pa,logvar_a) + torch.mm(pb,logvar_b)
# [num_intervals+1, dim_z]
reconstruction = model.decode(means_a_to_b, strategy="greedy", K=5)
content_output += "\n" + "a: "+" ".join([model.decoder.vocab.id2word(id) for id in sample_a.view(-1).tolist()])+"\n"
content_output += "\n".join([f"{pa_:.2f}: {' '.join(words)}" for pa_, words in zip(pa.view(-1).tolist(), reconstruction)])
content_output += "\n" + "b: "+" ".join([model.decoder.vocab.id2word(id) for id in sample_b.view(-1).tolist()])+"\n"
elif mode == "priorsampling":
zs = model.encoder.prior_to_zs(torch.zeros_like(mean), nsamples=1).squeeze(1)
reconstruction = model.decode(zs, strategy="greedy", K=5)
content_output += "\n" + "gts:" + "\n"
content_output += "\n".join([" ".join([model.decoder.vocab.id2word(id) for id in batch_data[j].tolist()]) for j in range(batch_size)])
content_output += "\n" + "res:" + "\n"
content_output += "\n".join([" ".join(words) for words in reconstruction])
with open(file_name, "a+") as f:
f.write(content_output+"\n"+end_line)
return
def test_args(args):
tp = test_preparation(args_specification=None, args=args)
args, model, (train_data, val_data, test_data), vocab = tp
with torch.no_grad():
# metrics for language modeling
test_data_batch = test_data.create_data_batch(
batch_size=args.batch_size, device=args.device, batch_first=True)
loss_eval, metrics = test(model, test_data_batch, "TEST", args, print, verbose=0)
# metrics for latent space
if model.encoder.useGaussian:
metrics.update(test_kl_hole(args_specification=None, tp=tp))
else:
metrics.update({metric_name:np.nan for metric_name in metric_names_latent}) # TODO
return metrics, tp
def get_all_results(args_specifications, random_seed=None):
all_results = defaultdict(lambda :{})
for args_specification in tqdm(args_specifications):
args = init_config(args_specification) if random_seed is None else init_config(args_specification+["--seed",str(random_seed)])
if check_args(args) == False:
return_dict = {metric:np.nan for metric in metric_names_lm+metric_names_latent} # training not complete
else:
return_dict, tp = test_args(args) # test this model
_, model, _, _ = tp
# side effect: do text generation and output results into corresponding files
if model.encoder.useGaussian:
test_generation(args_specification=None, tp=tp, mode="interpolation")
all_results[args.dataset][args.model_name] = return_dict
torch.cuda.empty_cache()
return all_results
def get_all_analytical_results(args_specifications, random_seeds):
seeded_results = [get_all_results(args_specifications, random_seed) for random_seed in random_seeds]
all_analytical_results = {}
for dataset in seeded_results[0]:
all_analytical_results[dataset] = {}
for model_name in seeded_results[0][dataset]:
all_analytical_results[dataset][model_name] = {}
for metric_name in seeded_results[0][dataset][model_name]:
metric_values = [seeded_results[seed][dataset][model_name][metric_name] for seed in range(len(random_seeds))]
all_analytical_results[dataset][model_name][metric_name] = f"{np.mean(metric_values):.2f} +/- {np.std(metric_values):.2f}"
return all_analytical_results
def output_all_results_to_excel(all_results, output_path="./evaluation.xlsx", output_metrics=metric_names_lm+metric_names_latent):
import pandas as pd
if os.path.exists(output_path):
output_path = output_path.replace(".xlsx",f".{time.strftime('%Y-%m-%d-%H:%M:%S',time.localtime())}.xlsx")
pd.DataFrame().to_excel(output_path)
writer = pd.ExcelWriter(output_path)
for dataset in all_results:
model_names = []
pd_dict = {metric:[] for metric in output_metrics}
for model_name in all_results[dataset]:
model_names.append(model_name.split("/")[-1])
results = all_results[dataset][model_name]
for metric in output_metrics:
pd_dict[metric].append(results[metric])
df = pd.DataFrame(pd_dict, index=model_names)
df.to_excel(writer, sheet_name=dataset)
print(df)
writer.save()
return
def evaluate_interpolation_results(args_specifications, output_name='unk', num_processes=None):
from nlg_metrics.static_metrics import bleu, selfbleu, distinct, rouge
all_results = defaultdict(lambda :{})
output_metrics = [f"{metric}-{i}" for metric in ["bleu","selfbleu","distinct"] for i in [1,2,3,4]] + [f"rouge-{prf}-{i/10:.1f}" for prf in ["p","r","f"] for i in range(11)]
def evaluate(args_specification):
args = init_config(args_specification)
if not os.path.exists(f"{args.exp_dir}/interpolation.txt"):
return args, {metric_name:np.nan for metric_name in output_metrics}
with open(f"{args.exp_dir}/interpolation.txt", "r") as f:
alllines = f.readlines()
interpolation_groups = []
for i in range(int(len(alllines)/14)):
lines = alllines[i*14+1:(i+1)*14]
assert "a: <s> " in lines[0] and "b: <s> " in lines[-1]
sentence_a = lines[0].replace("a: <s> ","").replace(" </s>\n","")
sentence_b = lines[-1].replace("b: <s> ","").replace(" </s>\n","")
sentence_inter = [line[6:-6] for line in lines[1:-1]]
interpolation_groups.append((sentence_a,sentence_b,sentence_inter))
gts, res = {}, {}
for i,(sentence_a,sentence_b,sentence_inter) in enumerate(interpolation_groups):
gts[i*2], gts[i*2+1] = [sentence_a], [sentence_b]
res[i*2], res[i*2+1] = [sentence_inter[0]], [sentence_inter[-1]]
bleu_results = bleu(gts,res)
selfbleu_results = np.mean([selfbleu(sentence_inter) for sentence_a,sentence_b,sentence_inter in interpolation_groups], axis=0)
distinct_results = np.mean([distinct(sentence_inter) for sentence_a,sentence_b,sentence_inter in interpolation_groups], axis=0)
rouge_results = [rouge(
[_[0] for _ in interpolation_groups]+[_[1] for _ in interpolation_groups],\
[_[2][i] for _ in interpolation_groups]*2
) for i in range(11)]
# list[dict[dict]], list in length of 11, dict of ['rouge-1','rouge-2','rouge-l'], dict of ["f","p","r"]
rouge_results = [_['rouge-l'][prf] for prf in ["p","r","f"] for _ in rouge_results]
return args, {metric_name:metric_value for metric_name,metric_value in zip(
output_metrics,
bleu_results + selfbleu_results.tolist() + distinct_results.tolist() + rouge_results
)}
if num_processes is None:
for args_specification in tqdm(args_specifications):
args, results = evaluate(args_specification)
if args is not None:
all_results[args.dataset][args.model_name] = results
else:
from multiprocess import Pool
with Pool(processes=num_processes) as pool:
args_results = list(tqdm(pool.imap(evaluate, args_specifications), total=len(args_specifications)))
for args, results in args_results:
if args is not None:
all_results[args.dataset][args.model_name] = results
output_all_results_to_excel(all_results, output_metrics=output_metrics,
output_path=f"./evaluation.interpolation.{output_name}.xlsx")
return
def evaluate_priorsampling_results(args_specifications, output_name='unk', num_processes=None):
output_metrics = [f"{metric}-{i}" for metric in ["bleu-p","bleu-r","bleu-f"] for i in [1,2,3,4]]
all_results = defaultdict(lambda :{})
def evaluate(args_specification, num_piece=50):
from nlg_metrics.static_metrics import bleu
args = init_config(args_specification)
if not os.path.exists(f"{args.exp_dir}/priorsampling.txt"):
return args, {metric_name:np.nan for metric_name in output_metrics}
with open(f"{args.exp_dir}/priorsampling.txt", "r") as f:
alllines = f.readlines()
gts, res = [], []
for line in alllines[1:-1]: # the first line is blank, and the last line is end_line
if line=="gts:\n": out = gts
elif line=="res:\n": out = res
else: out.append(line.replace("<s> ","").replace(" </s>\n",""))
num_piece = min(num_piece, int(np.sqrt(len(res))-1))
len_piece_gts, len_piece_res = math.ceil(len(gts)/num_piece), math.ceil(len(res)/num_piece)
def np_weighted_mean(scores, weight):
return ((scores*weight[:,None]).sum(axis=0) / weight.sum(axis=0)).tolist()
bleu_p_results = np_weighted_mean(
scores = np.array([bleu({"all":gts},{"all":res[len_piece_res*i:len_piece_res*(i+1)]}) for i in range(num_piece)]),
weight = np.array([len(res[len_piece_res*i:len_piece_res*(i+1)]) for i in range(num_piece)]))
bleu_r_results = np_weighted_mean(
scores = np.array([bleu({"all":res},{"all":gts[len_piece_gts*i:len_piece_gts*(i+1)]}) for i in range(num_piece)]),
weight = np.array([len(gts[len_piece_gts*i:len_piece_gts*(i+1)]) for i in range(num_piece)]))
bleu_f_results = [2*bleu_p*bleu_r/(bleu_p+bleu_r) for bleu_p,bleu_r in zip(bleu_p_results,bleu_r_results)]
return args, {metric_name:metric_value for metric_name,metric_value in zip(
output_metrics, bleu_p_results + bleu_r_results + bleu_f_results)}
if num_processes is None:
for args_specification in tqdm(args_specifications):
args, results = evaluate(args_specification)
all_results[args.dataset][args.model_name] = results
else:
from multiprocess import Pool
with Pool(processes=num_processes) as pool:
args_results = list(tqdm(pool.imap(evaluate, args_specifications), total=len(args_specifications)))
for args, results in args_results:
all_results[args.dataset][args.model_name] = results
output_all_results_to_excel(all_results, output_metrics=output_metrics,
output_path=f"./evaluation.priorsampling.{output_name}.xlsx")
return
def experiments_evaluation_when_all_complete(args_specifications, random_seeds=None, output_name='unk'):
if not block_until_all_complete(args_specifications):
print("abort waiting for experiments to all complete")
else:
print("all experiments complete")
if random_seeds is None:
all_results = get_all_results(args_specifications)
else:
all_results = get_all_analytical_results(args_specifications, random_seeds)
output_all_results_to_excel(all_results, output_path=f"./evaluation.LM.{output_name}.xlsx")
# side effect: evaluation for text generation records from corresponding files
evaluate_interpolation_results(args_specifications, output_name=output_name, num_processes=16)
#evaluate_priorsampling_results(args_specifications, output_name=output_name, num_processes=16)