-
Notifications
You must be signed in to change notification settings - Fork 191
/
mst_generate.py
225 lines (197 loc) · 9.91 KB
/
mst_generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
#-------------------------------------------------------------------------------
# Name: mst_generate.py
# Purpose: Generate skeleton as a tree based on predicted joints.
# RigNet Copyright 2020 University of Massachusetts
# RigNet is made available under General Public License Version 3 (GPLv3), or under a Commercial License.
# Please see the LICENSE README.txt file in the main directory for more information and instruction on using and licensing RigNet.
#-------------------------------------------------------------------------------
import os
import cv2
import argparse
import numpy as np
import open3d as o3d
from utils import binvox_rw
from utils.tree_utils import TreeNode
from utils.rig_parser import Skel
from utils.vis_utils import show_obj_skel, draw_shifted_pts
from utils.io_utils import readPly
from utils.cluster_utils import meanshift_cluster, nms_meanshift
from utils.mst_utils import primMST_symmetry, loadSkel_recur, increase_cost_for_outside_bone, flip, inside_check, sample_on_bone
from gen_dataset import get_geo_edges, get_tpl_edges
from geometric_proc.common_ops import calc_surface_geodesic
import torch
from torch_geometric.data import Data
from torch_geometric.utils import add_self_loops
from models.ROOT_GCN import ROOTNET
from models.PairCls_GCN import PairCls
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def predict_joints(model_id, args):
"""
predict joints for a specified model
:param model_id: processed model ID number
:param args:
:return: predicted joints, and voxelized mesh
"""
vox_folder = os.path.join(args.dataset_folder, 'vox/')
mesh_folder = os.path.join(args.dataset_folder, 'obj_remesh/')
raw_pred = os.path.join(args.res_folder, '{:d}.ply'.format(model_id))
vox_file = os.path.join(vox_folder, '{:d}.binvox'.format(model_id))
mesh_file = os.path.join(mesh_folder, '{:d}.obj'.format(model_id))
pred_attn = np.load(os.path.join(args.res_folder, '{:d}_attn.npy'.format(model_id)))
with open(vox_file, 'rb') as fvox:
vox = binvox_rw.read_as_3d_array(fvox)
pred_joints = readPly(raw_pred)
pred_joints, index_inside = inside_check(pred_joints, vox)
pred_attn = pred_attn[index_inside, :]
# img = draw_shifted_pts(mesh_file, pred_joints, weights=pred_attn)
bandwidth = np.load(os.path.join(args.res_folder, '{:d}_bandwidth.npy'.format(model_id)))
bandwidth = bandwidth[0]
pred_joints = pred_joints[pred_attn.squeeze() > 1e-3]
pred_attn = pred_attn[pred_attn.squeeze() > 1e-3]
# reflect raw points
pred_joints_reflect = pred_joints * np.array([[-1, 1, 1]])
pred_joints = np.concatenate((pred_joints, pred_joints_reflect), axis=0)
pred_attn = np.tile(pred_attn, (2, 1))
# img = draw_shifted_pts(mesh_file, pred_joints, weights=pred_attn)
# cv2.imwrite(os.path.join(res_folder, '{:s}_raw.jpg'.format(model_id)), img[:, :, ::-1])
pred_joints = meanshift_cluster(pred_joints, bandwidth, pred_attn, max_iter=20)
Y_dist = np.sum(((pred_joints[np.newaxis, ...] - pred_joints[:, np.newaxis, :]) ** 2), axis=2)
density = np.maximum(bandwidth ** 2 - Y_dist, np.zeros(Y_dist.shape))
# density = density * pred_attn
density = np.sum(density, axis=0)
density_sum = np.sum(density)
pred_joints_ = pred_joints[density / density_sum > args.threshold_best]
density_ = density[density / density_sum > args.threshold_best]
pred_joints_ = nms_meanshift(pred_joints_, density_, bandwidth)
pred_joints_, _ = flip(pred_joints_)
reduce_threshold = args.threshold_best
while len(pred_joints_) < 2 and reduce_threshold > 1e-7:
# print('reducing')
reduce_threshold = reduce_threshold / 1.3
pred_joints_ = pred_joints[density / density_sum >= reduce_threshold]
density_ = density[density / density_sum > reduce_threshold]
pred_joints_ = nms_meanshift(pred_joints_, density_, bandwidth)
pred_joints_, _ = flip(pred_joints_)
if reduce_threshold <= 1e-7:
pred_joints_ = nms_meanshift(pred_joints_, density, bandwidth)
pred_joints_, _ = flip(pred_joints_)
pred_joints = pred_joints_
# img = draw_shifted_pts(mesh_file, pred_joints)
# cv2.imwrite(os.path.join(res_folder, '{:d}_joint.jpg'.format(model_id)), img)
# np.save(os.path.join(res_folder, '{:d}_joint.npy'.format(model_id)), pred_joints)
return pred_joints, vox
def getInitId(data, model):
"""
predict root joint ID via rootnet
:param data:
:param model:
:return:
"""
with torch.no_grad():
root_prob, _ = model(data, shuffle=False)
root_prob = torch.sigmoid(root_prob).data.cpu().numpy()
root_id = np.argmax(root_prob)
return root_id
def create_single_data(mesh, vox, surface_geodesic, pred_joints):
"""
create data used as input to networks, wrapped by Data structure in pytorch-gemetric library
:param mesh: input mesh loaded by open3d
:param vox: voxelized mesh
:param surface_geodesic: geodesic distance matrix of all vertices
:param pred_joints: predicted joints
:return: wrapped data structure
"""
mesh_v = np.asarray(mesh.vertices)
mesh_vn = np.asarray(mesh.vertex_normals)
mesh_f = np.asarray(mesh.triangles)
# vertices
v = np.concatenate((mesh_v, mesh_vn), axis=1)
v = torch.from_numpy(v).float()
# topology edges
print(" gathering topological edges.")
tpl_e = get_tpl_edges(mesh_v, mesh_f).T
tpl_e = torch.from_numpy(tpl_e).long()
tpl_e, _ = add_self_loops(tpl_e, num_nodes=v.size(0))
# geodesic edges
print(" gathering geodesic edges.")
geo_e = get_geo_edges(surface_geodesic, mesh_v).T
geo_e = torch.from_numpy(geo_e).long()
geo_e, _ = add_self_loops(geo_e, num_nodes=v.size(0))
batch = np.zeros(len(v))
batch = torch.from_numpy(batch).long()
pair_all = []
for joint1_id in range(len(pred_joints)):
for joint2_id in range(joint1_id + 1, len(pred_joints)):
dist = np.linalg.norm(pred_joints[joint1_id] - pred_joints[joint2_id])
bone_samples = sample_on_bone(pred_joints[joint1_id], pred_joints[joint2_id])
bone_samples_inside, _ = inside_check(bone_samples, vox)
outside_proportion = len(bone_samples_inside) / (len(bone_samples) + 1e-10)
pair = np.array([joint1_id, joint2_id, dist, outside_proportion, 1])
pair_all.append(pair)
pair_all = np.array(pair_all)
pair_all = torch.from_numpy(pair_all).float()
num_pair = len(pair_all)
num_joint = len(pred_joints)
if len(pred_joints) < len(mesh_v):
pred_joints = np.tile(pred_joints, (round(1.0 * len(mesh_v) / len(pred_joints) + 0.5), 1))
pred_joints = pred_joints[:len(mesh_v), :]
elif len(pred_joints) > len(mesh_v):
pred_joints = pred_joints[:len(mesh_v), :]
pred_joints = torch.from_numpy(pred_joints).float()
data = Data(x=torch.from_numpy(mesh_vn), pos=torch.from_numpy(mesh_v).float(), batch=batch, y=pred_joints,
pairs=pair_all, num_pair=[num_pair], tpl_edge_index=tpl_e, geo_edge_index=geo_e, num_joint=[num_joint]).to(device)
return data
def run_mst_generate(args):
"""
generate skeleton in batch
:param args: input folder path and data folder path
"""
test_list = np.loadtxt(os.path.join(args.dataset_folder, 'test_final.txt'), dtype=np.int)
root_select_model = ROOTNET()
root_select_model.to(device)
root_select_model.eval()
root_checkpoint = torch.load(args.rootnet)
root_select_model.load_state_dict(root_checkpoint['state_dict'])
connectivity_model = PairCls()
connectivity_model.to(device)
connectivity_model.eval()
conn_checkpoint = torch.load(args.bonenet)
connectivity_model.load_state_dict(conn_checkpoint['state_dict'])
for model_id in test_list:
print(model_id)
pred_joints, vox = predict_joints(model_id, args)
mesh_filename = os.path.join(args.dataset_folder, 'obj_remesh/{:d}.obj'.format(model_id))
mesh = o3d.io.read_triangle_mesh(mesh_filename)
surface_geodesic = calc_surface_geodesic(mesh)
data = create_single_data(mesh, vox, surface_geodesic, pred_joints)
root_id = getInitId(data, root_select_model)
with torch.no_grad():
cost_matrix, _ = connectivity_model.forward(data)
connect_prob = torch.sigmoid(cost_matrix)
pair_idx = data.pairs.long().data.cpu().numpy()
cost_matrix = np.zeros((data.num_joint[0], data.num_joint[0]))
cost_matrix[pair_idx[:, 0], pair_idx[:, 1]] = connect_prob.data.cpu().numpy().squeeze()
cost_matrix = cost_matrix + cost_matrix.transpose()
cost_matrix = -np.log(cost_matrix+1e-10)
#cost_matrix = flip_cost_matrix(pred_joints, cost_matrix)
cost_matrix = increase_cost_for_outside_bone(cost_matrix, pred_joints, vox)
skel = Skel()
parent, key, root_id = primMST_symmetry(cost_matrix, root_id, pred_joints)
for i in range(len(parent)):
if parent[i] == -1:
skel.root = TreeNode('root', tuple(pred_joints[i]))
break
loadSkel_recur(skel.root, i, None, pred_joints, parent)
img = show_obj_skel(mesh_filename, skel.root)
cv2.imwrite(os.path.join(args.res_folder, '{:d}_skel.jpg'.format(model_id)), img[:,:,::-1])
skel.save(os.path.join(args.res_folder, '{:d}_skel.txt'.format(model_id)))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='')
parser.add_argument('--dataset_folder', default='/media/zhanxu/4T1/ModelResource_RigNetv1_preproccessed/', type=str)
parser.add_argument('--res_folder', default='results/gcn_meanshift/best_25/', type=str)
parser.add_argument('--rootnet', default='checkpoints/rootnet/model_best.pth.tar', type=str)
parser.add_argument('--bonenet', default='checkpoints/bonenet/model_best.pth.tar', type=str)
parser.add_argument('--threshold_best', default=1e-5, type=float)
args = parser.parse_args()
print(args)
run_mst_generate(args)