forked from PurdueDualityLab/tf-models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
136 lines (111 loc) · 3.58 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
# Copyright 2017 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Basic data management and plotting utilities."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import cPickle as pickle
import getpass
import numpy as np
import gc
import tensorflow as tf
#
# Python utlities
#
def exp_moving_average(x, alpha=0.9):
res = []
mu = 0
alpha_factor = 1
for x_i in x:
mu += (1 - alpha)*(x_i - mu)
alpha_factor *= alpha
res.append(mu/(1 - alpha_factor))
return np.array(res)
def sanitize(s):
return s.replace('.', '_')
#
# Tensorflow utilities
#
def softplus(x):
'''
Let m = max(0, x), then,
sofplus(x) = log(1 + e(x)) = log(e(0) + e(x)) = log(e(m)(e(-m) + e(x-m)))
= m + log(e(-m) + e(x - m))
The term inside of the log is guaranteed to be between 1 and 2.
'''
m = tf.maximum(tf.zeros_like(x), x)
return m + tf.log(tf.exp(-m) + tf.exp(x - m))
def safe_log_prob(x, eps=1e-8):
return tf.log(tf.clip_by_value(x, eps, 1.0))
def rms(x):
return tf.sqrt(tf.reduce_mean(tf.square(x)))
def center(x):
mu = (tf.reduce_sum(x) - x)/tf.to_float(tf.shape(x)[0] - 1)
return x - mu
def vectorize(grads_and_vars, set_none_to_zero=False, skip_none=False):
if set_none_to_zero:
return tf.concat([tf.reshape(g, [-1]) if g is not None else
tf.reshape(tf.zeros_like(v), [-1]) for g, v in grads_and_vars], 0)
elif skip_none:
return tf.concat([tf.reshape(g, [-1]) for g, v in grads_and_vars if g is not None], 0)
else:
return tf.concat([tf.reshape(g, [-1]) for g, v in grads_and_vars], 0)
def add_grads_and_vars(a, b):
'''Add grads_and_vars from two calls to tf.compute_gradients.'''
res = []
for (g_a, v_a), (g_b, v_b) in zip(a, b):
assert v_a == v_b
if g_a is None:
res.append((g_b, v_b))
elif g_b is None:
res.append((g_a, v_a))
else:
res.append((g_a + g_b, v_a))
return res
def binary_log_likelihood(y, log_y_hat):
"""Computes binary log likelihood.
Args:
y: observed data
log_y_hat: parameters of the binary variables
Returns:
log_likelihood
"""
return tf.reduce_sum(y*(-softplus(-log_y_hat)) +
(1 - y)*(-log_y_hat-softplus(-log_y_hat)),
1)
def cov(a, b):
"""Compute the sample covariance between two vectors."""
mu_a = tf.reduce_mean(a)
mu_b = tf.reduce_mean(b)
n = tf.to_float(tf.shape(a)[0])
return tf.reduce_sum((a - mu_a)*(b - mu_b))/(n - 1.0)
def corr(a, b):
return cov(a, b)*tf.rsqrt(cov(a, a))*tf.rsqrt(cov(b, b))
def logSumExp(t, axis=0, keep_dims = False):
'''Computes the log(sum(exp(t))) numerically stabily.
Args:
t: input tensor
axis: which axis to sum over
keep_dims: whether to keep the dim or not
Returns:
tensor with result
'''
m = tf.reduce_max(t, [axis])
res = m + tf.log(tf.reduce_sum(tf.exp(t - tf.expand_dims(m, axis)), [axis]))
if keep_dims:
return tf.expand_dims(res, axis)
else:
return res