-
Notifications
You must be signed in to change notification settings - Fork 51
/
run.py
374 lines (270 loc) · 14 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
# Multi-Grained Vision Language Pre-Training: Aligning Texts with Visual Concepts (https://arxiv.org/abs/2111.08276)
# Github: https://github.com/zengyan-97/X-VLM
# Copyright (c) 2022, ByteDance Inc.
# All rights reserved.
import os
import sys
import time
import random
import argparse
from utils.hdfs_io import HADOOP_BIN, hexists, hmkdir, hcopy
############ Set it correctly for distributed training across nodes
NNODES = 1 # e.g. 1/2/3/4
NPROC_PER_NODE = 8 # e.g. 8 gpus
MASTER_ADDR = 'SET_IT'
MASTER_PORT = 12345
NODE_RANK = 0 # e.g. 0/1/2
############
print("NNODES, ", NNODES)
print("NPROC_PER_NODE, ", NPROC_PER_NODE)
print("MASTER_ADDR, ", MASTER_ADDR)
print("MASTER_PORT, ", MASTER_PORT)
print("NODE_RANK, ", NODE_RANK)
def get_nnodes(args): # when using only part of nodes
if args.dist == 'all':
return NNODES
else:
return 1
def get_dist_launch(args): # some examples
if args.dist == 'all': # use all nodes
return "python3 -m torch.distributed.launch --nproc_per_node={:} " \
"--nnodes={:} --node_rank={:} --master_addr={:} --master_port={:}".format(
NPROC_PER_NODE, NNODES, NODE_RANK, MASTER_ADDR, MASTER_PORT)
elif args.dist == '1':
return "python3 -m torch.distributed.launch --nproc_per_node={:} " \
"--nnodes=1 ".format(NPROC_PER_NODE)
elif args.dist == 'f4':
return "CUDA_VISIBLE_DEVICES=0,1,2,3 WORLD_SIZE=4 python3 -m torch.distributed.launch --nproc_per_node=4 " \
"--nnodes=1 "
elif args.dist == 'l4':
return "CUDA_VISIBLE_DEVICES=4,5,6,7 WORLD_SIZE=4 python3 -m torch.distributed.launch --master_port=12345 --nproc_per_node=4 " \
"--nnodes=1 "
elif args.dist.startswith('gpu'): # use one gpu, --dist "gpu0"
num = int(args.dist[3:])
assert 0 <= num <= 8
return "CUDA_VISIBLE_DEVICES={:} WORLD_SIZE=1 python3 -m torch.distributed.launch --nproc_per_node=1 " \
"--nnodes=1 ".format(num)
else:
raise ValueError
def get_from_hdfs(file_hdfs):
"""
compatible to HDFS path or local path
"""
if file_hdfs.startswith('hdfs'):
file_local = os.path.split(file_hdfs)[-1]
if os.path.exists(file_local):
print(f"rm existing {file_local}")
os.system(f"rm {file_local}")
hcopy(file_hdfs, file_local)
else:
file_local = file_hdfs
assert os.path.exists(file_local)
return file_local
def run_pretrain(args):
print("### Start pre-training", flush=True)
dist_launch = get_dist_launch(args)
os.system(f"{dist_launch} --use_env Pretrain.py --config {args.config} --output_dir {args.output_dir}")
def run_pretrain_nlvr(args):
print("### Start nlvr domain pre-training", flush=True)
dist_launch = get_dist_launch(args)
if len(args.load_ckpt_from):
print(f"### Loading domain pre-trained results from: {args.load_ckpt_from}")
args.checkpoint = get_from_hdfs(args.load_ckpt_from)
else: # domain pre-train
if not os.path.exists(args.config): args.config = 'configs/NLVR_pretrain_O1.yaml'
os.system(f"{dist_launch} --use_env NLVR_pretrain.py --config {args.config} "
f"--output_dir {args.output_dir} --checkpoint {args.checkpoint}")
args.checkpoint = get_from_hdfs(f"{args.output_dir}/model_state_epoch_latest.th")
# run fine-tune
if len(args.output_dir): args.output_dir += '_nlvr2'
args.config = 'configs/NLVR.yaml'
run_nlvr2(args, load_nlvr_pretrain=True)
def run_pretrain_refcoco_bbox(args):
print("### Start refcoco bbox domain pre-training", flush=True)
dist_launch = get_dist_launch(args)
if len(args.load_ckpt_from):
print(f"### Loading domain pre-trained results from: {args.load_ckpt_from}")
args.checkpoint = get_from_hdfs(args.load_ckpt_from)
else: # domain pre-train
if not os.path.exists(args.config): args.config = './configs/Grounding_bbox_pretrain_O1.yaml'
os.system(f"{dist_launch} "
f"--use_env Grounding_bbox_pretrain.py --config {args.config} "
f"--output_dir {args.output_dir} --checkpoint {args.checkpoint}")
args.checkpoint = get_from_hdfs(f"{args.output_dir}/model_state_epoch_latest.th")
# run fine-tune
if len(args.output_dir): args.output_dir += '_refcoco'
args.config = 'configs/Grounding_bbox.yaml'
run_refcoco(args, use_bbox=True, load_bbox_pretrain=True)
def run_nlvr2(args, load_nlvr_pretrain=False):
dist_launch = get_dist_launch(args)
print("### Training NLVR2", flush=True)
os.system(f"{dist_launch} "
f"--use_env NLVR.py --config {args.config} "
f"--output_dir {args.output_dir} --bs {args.bs} --checkpoint {args.checkpoint} {'--load_nlvr_pretrain' if load_nlvr_pretrain else ''} "
f"{'--evaluate' if args.evaluate else ''}")
def run_retrieval(args):
dist_launch = get_dist_launch(args)
os.system(f"{dist_launch} "
f"--use_env Retrieval.py --config {args.config} "
f"--output_dir {args.output_dir} --bs {args.bs} --checkpoint {args.checkpoint} {'--evaluate' if args.evaluate else ''}")
def run_vqa(args):
dist_launch = get_dist_launch(args)
print("### Training VQA", flush=True)
if not os.path.exists(args.config): args.config = './configs/VQA.yaml'
os.system(f"{dist_launch} "
f"--use_env VQA.py --config {args.config} "
f"{f'--output_hdfs {args.output_hdfs}' if len(args.output_hdfs) else ''} --output_dir {args.output_dir} "
f"--bs {args.bs} --checkpoint {args.checkpoint} {'--evaluate' if args.evaluate else ''}")
def run_refcoco(args, use_bbox=False, block_num=-1, load_bbox_pretrain=False, epochs=-1):
dist_launch = get_dist_launch(args)
if use_bbox:
print("### Training RefCOCO with bbox", flush=True)
os.system(f"{dist_launch} "
f"--use_env Grounding_bbox.py --config {args.config} "
f"--output_dir {args.output_dir} {f'--output_hdfs {args.output_hdfs}' if len(args.output_hdfs) else ''} "
f"--bs {args.bs} {'--load_bbox_pretrain' if load_bbox_pretrain else ''} --checkpoint {args.checkpoint} "
f"{'--evaluate' if args.evaluate else ''}")
else:
print("### Training RefCOCO", flush=True)
os.system(f"{dist_launch} "
f"--use_env Grounding.py --config {args.config} "
f"--output_dir {args.output_dir} --bs {args.bs} {f'--output_hdfs {args.output_hdfs}' if len(args.output_hdfs) else ''} "
f"--gradcam_mode itm --block_num {block_num} --epochs {epochs} --checkpoint {args.checkpoint} "
f"{'--evaluate' if args.evaluate else ''}")
def run_pretrain_captioning(args):
print("### Start captioning domain pre-training", flush=True)
dist_launch = get_dist_launch(args)
if len(args.load_ckpt_from):
print(f"### Loading domain pre-trained results from: {args.load_ckpt_from}")
domain_ckpt = get_from_hdfs(args.load_ckpt_from)
else: # domain pre-train
if not os.path.exists(args.config): args.config = f'configs/Captioning_pretrain_O1.yaml'
os.system(f"{dist_launch} --use_env Captioning_pretrain.py --seed {args.seed} --config {args.config} "
f"--output_dir {args.output_dir} --checkpoint {args.checkpoint}")
domain_ckpt = get_from_hdfs(f"{args.output_dir}/model_state_epoch_latest.th")
return domain_ckpt
def run_coco_captioning(args, load_capt_pretrain=False, scst=False):
dist_launch = get_dist_launch(args)
assert os.path.exists("images/coco")
print("### Training COCO Captioning", flush=True)
if not os.path.exists(args.config):
args.config = f'./configs/Captioning.yaml'
if scst:
load_capt_pretrain = True # same way to load ckpt;
os.system(f"{dist_launch} "
f"--use_env {'Captioning_scst.py' if scst else 'Captioning.py'} --config {args.config} "
f"{f'--output_hdfs {args.output_hdfs}' if len(args.output_hdfs) else ''} --output_dir {args.output_dir} "
f"--bs {args.bs} --seed {args.seed} --checkpoint {args.checkpoint} "
f"{'--scst' if scst else ''} {'--load_capt_pretrain' if load_capt_pretrain else ''} {'--evaluate' if args.evaluate else ''}")
def run(args):
if args.task not in ['pretrain_4m_base']:
assert hexists(args.checkpoint) or hexists(args.load_ckpt_from)
if args.task == 'pretrain_4m_base':
args.config = 'configs/Pretrain_XVLM_base_4m.yaml'
run_pretrain(args)
elif args.task == 'itr_coco':
assert os.path.exists("images/coco")
args.config = 'configs/Retrieval_coco.yaml'
run_retrieval(args)
elif args.task == 'itr_flickr':
assert os.path.exists("images/flickr30k-images")
args.config = 'configs/Retrieval_flickr.yaml'
run_retrieval(args)
elif args.task == 'vqa':
assert os.path.exists("images/coco") and os.path.exists("images/visualgenome")
run_vqa(args)
elif args.task == 'vqa_480':
assert os.path.exists("images/coco") and os.path.exists("images/visualgenome")
# if use 480x480 (the accuracy will increase 0.5%):
args.config = "configs/VQA_480.yaml"
run_vqa(args)
elif args.task == 'nlvr':
assert os.path.exists("images/nlvr2")
run_pretrain_nlvr(args)
elif args.task == 'refcoco_weakly':
assert os.path.exists("images/coco")
args.config = './configs/Grounding.yaml'
run_refcoco(args, block_num=9) # 9 for X-VLM base
elif args.task == 'refcoco_block_num_search': # for refcoco_weakly
assert os.path.exists("images/coco")
# block_num: use which layer of the cross-modal encoder for calculation
# it is a critical hyper-param for refcoco without bbox annotations
for num in [8, 9, 10, 7]:
print(f"### block_num {num}")
args.config = './configs/Grounding.yaml'
run_refcoco(args, block_num=num, epochs=1)
elif args.task == 'refcoco_bbox':
assert os.path.exists("images/coco")
run_pretrain_refcoco_bbox(args)
elif args.task.startswith('coco_capt_domain'):
domain_ckpt = run_pretrain_captioning(args)
# run fine-tune, reset args
args.checkpoint = domain_ckpt
if hexists(args.output_dir): args.output_dir = os.path.join(args.output_dir, 'coco_capt_ft')
args.config = f'./configs/Captioning.yaml'
run_coco_captioning(args, load_capt_pretrain=True)
elif args.task == 'coco_captioning':
run_coco_captioning(args, load_capt_pretrain=True)
elif args.task == 'coco_captioning_scst': # load checkpoint of 'coco_captioning' results
args.config = f'./configs/Captioning_scst.yaml'
run_coco_captioning(args, scst=True)
elif args.task == 'eval_vlue_itr':
assert os.path.exists("images/marvl")
args.config = f"configs/vlue-base-test/Retrieval.yaml"
args.evaluate = True
run_retrieval(args)
elif args.task == 'eval_vlue_vqa':
assert os.path.exists("images/marvl")
# args.config = f"configs/vlue-base-test/VQA.yaml"
args.config = f"configs/vlue-base-test/VQA_480.yaml"
args.evaluate = True
run_vqa(args)
elif args.task == 'eval_vlue_nlvr':
assert os.path.exists("images/marvl")
args.evaluate = True
args.config = f"configs/vlue-base-test/NLVR.yaml"
run_nlvr2(args)
elif args.task == 'eval_vlue_refcoco':
assert os.path.exists("images/marvl")
args.evaluate = True
args.config = f"configs/vlue-base-test/Grounding_bbox.yaml"
run_refcoco(args, use_bbox=True)
elif args.task == 'eval_vlue_refcoco_weakly':
assert os.path.exists("images/marvl")
args.evaluate = True
args.config = f"configs/vlue-base-test/Grounding_weakly.yaml"
run_refcoco(args)
else:
raise NotImplementedError(f"task == {args.task}")
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--task', type=str, required=True)
parser.add_argument('--dist', type=str, required=True, help="see func get_dist_launch for details")
parser.add_argument('--config', default='', type=str, help="if not given, use default")
parser.add_argument('--bs', default=-1, type=int, help="for each gpu, batch_size = bs // num_gpus; "
"this option only works for fine-tuning scripts.")
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--checkpoint', default='', type=str, help="for fine-tuning")
parser.add_argument('--load_ckpt_from', default='', type=str, help="load domain pre-trained params")
# write path: local or HDFS
parser.add_argument('--output_dir', type=str, required=True, help='for fine-tuning, local path; '
'for pre-training, local and HDFS are both allowed.')
parser.add_argument('--output_hdfs', type=str, default='', help="HDFS path required by VQA and Refcoco, "
"to collect eval results among nodes")
parser.add_argument('--evaluate', action='store_true', help="evaluation on downstream tasks")
args = parser.parse_args()
if MASTER_ADDR == 'SET_IT':
print("### warning: the settings for distributed training is not filled (ignore this if you only use one node)")
if '/SET/PATH/TO/hadoop/bin/hdfs' in HADOOP_BIN:
print("### warning: you have not set the path to hadoop_bin (ignore this if you don't use HDFS)")
assert hexists(os.path.dirname(args.output_dir))
hmkdir(args.output_dir)
if len(args.output_hdfs):
assert hexists(os.path.dirname(args.output_hdfs))
if len(args.config):
assert hexists(args.config)
if args.config.startswith('hdfs://'):
args.config = get_from_hdfs(args.config)
if args.checkpoint.startswith('hdfs://'):
args.checkpoint = get_from_hdfs(args.checkpoint)
run(args)