-
Notifications
You must be signed in to change notification settings - Fork 3
/
WaveInt.py
390 lines (321 loc) · 14.4 KB
/
WaveInt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
'''
A class that deals with Bob Hermann's wavenumber integration code
Written by Z. Duputel, September 2013
'''
# Personals
from .utils import rm
import sacpy
# Externals
import sys
import os
import numpy as np
from subprocess import call
from glob import glob
from copy import deepcopy
class WaveInt(object):
'''
A class that deals with Bob Hermann's wavenumber integration code
'''
def __init__(self,model_file,npts,delta,T0=0.0,Vred=0.0,Xs=None,
stat=None,Xr=None,dist_file='dfile'):
'''
Args:
model_file: Earth model filename
npts: Number of samples
delta: Sampling period
T0: time of the first sample if Vred=0.0 (optional, default=0.0)
Vred: Reduction velocity (optional, default=0.0)
Xs: Source [X,Y,Z] coordinate in km (optional, default=None)
stat: Station names (optional, default=None)
Xr: Receivers XY coordinates in km (optional, default=None)
dist_file: Name of dist filename (optional, default='dfile')
'''
self.name = 'Waveform Integration'
# Check stat and Xr if both of them are specified
if stat!=None and Xr!=None:
assert len(stat)==len(Xr), 'Xr and stat must have same length'
# Convert Xr
if Xr!=None and not isinstance(Xr,np.ndarray):
Xr = np.array(Xr,dtype='float64')
# Assign attributes from input parameters
self.model_file = os.path.abspath(model_file)
self.dist_file = dist_file
self.npts = npts
self.delta = delta
self.T0 = T0
self.Vred = Vred
self.Xs = Xs
self.stat = stat
self.Xr = Xr
# Output synthetic seismograms
self.synth = None
# Hard-wired assignements
self.dist = None
# All done
return
def readStatXY(self,station_file):
'''
Read station file and populate the Xr attribute (station coordinates)
Args:
station_file: station filename including station coordinates
file format:
STNAME X_COORD Y_COORD
'''
# Assert if station file exists
assert os.path.exists(station_file), 'Cannot read %s (no such file)'%(station_file)
# Read the file and fill-up Xr
self.stat = []; self.Xr = []
for l in open(station_file):
if l.strip()[0]=='#':
continue
items = l.strip().split()
self.stat.append(items[0].strip())
self.Xr.append([float(items[1]),float(items[2])])
self.Xr = np.array(self.Xr,dtype='float64')
# All done
return
def setXr(self,stat_names,X,Y):
'''
Set X and Y receiver values
Args:
*stat_names: list of station names
* X: list or array of x coordinates
* Y: list or array of y coordinates
'''
# Check if X and Y are lists or arrays
if type(X)!=list and type(X)!=np.ndarray:
X = [X]
if type(Y)!=list and type(Y)!=np.ndarray:
Y = [Y]
if type(stat_names)!=list:
stat_names = [stat_names]
# Check length of stat_names, X and Y
assert len(X)==len(Y), 'X and Y should have same length'
assert len(stat_names)==len(X), 'stat_names and X should have same length'
# Assign X and Y to Xr
self.stat = deepcopy(stat_names)
self.Xr = np.array([[x,y] for x,y in zip(X,Y)],dtype='float64')
# All done
return
def checkXs(self):
'''
Check and convert source coordinates to the correct format
'''
# Convert to ndarray
if not isinstance(self.Xs,np.ndarray):
# Check if it has been correctly assigned
assert self.Xs!=None, 'Xs is not assigned correctly (must be a (3,) ndarray)'
self.Xs = np.array(self.Xs,dtype='float64')
# Check the size of the array
assert self.Xs.size==3, 'Xs is not assigned correctly (must be a (3,) ndarray)'
# All done
return
def calcDist(self,station_file=None):
'''
Calculate distances and populate the dist attribute
Args:
station_file: file including station coordinate (optional, default=None)
'''
# Read station file
if station_file!=None:
self.readStatXY(station_file)
# Check/Convert source coordinates
self.checkXs()
# Assert if Xr is correctly assigned
assert isinstance(self.Xr,np.ndarray), 'Xr is not assigned correctly (must be a (N,2) ndarray)'
# Compute distance and create the dist array attribute
dX = self.Xr-self.Xs[:2]
self.dist = np.sqrt((dX*dX).sum(axis=1))
# All done
return
def writeDistFile(self):
'''
Create distance file from the dist array attribute
'''
# Assert if dist is correct
assert isinstance(self.dist,np.ndarray), 'The array dist is not correct'
# Find unique elements of the dist array attribute
unique_dist = np.unique(self.dist)
# Write the file and close
f = open(self.dist_file,'wt')
format = '%10.5f %6.3f %6d %7.3f %6.3f\n'
for d in unique_dist:
f.write(format%(d,self.delta,self.npts,self.T0,self.Vred))
f.close()
# All done
return
def writeModelFile(self,Vp,Vs,Rho,H):
'''
Create model file from input Vp, Vs and thickness (H)
'''
# Assert if input parameters have the correct size
assert len(Vp)==len(Vs)==len(Rho)==len(H), 'Vp,Vs,Rho,H must have same dimensions'
# Write the file and close
f = open(self.model_file,'wt')
f.write('%d 1000.\n'%(len(h)))
for vp,vs,rho,h in zip(Vp,Vs,Rho,H):
f.write('%7.4f %7.4f %7.4f %7.4f\n'%(rho,vp,vs,h))
f.close()
# All done
return
def calcKernel(self,ofd=sys.stdout,efd=sys.stderr):
'''
Calculate Green's functions in the frequency domain
Args:
ofd: stream for standard output (optional, default=sys.stdout)
efd: stream for standard error (optional, default=sys.stdout)
'''
# Check/convert source coordinates
self.checkXs()
# Assert if the distance file exists and if Xs is correct
assert os.path.exists(self.dist_file), 'Cannot read %s (no such file)'%(self.dist_file)
# Define commands
hprep_cmd = 'hprep96 -M %s -d %s -HS %f -HR 0.0'%(self.model_file,self.dist_file,self.Xs[2])
hspec_cmd = 'hspec96'
# Calculate the GF spectrums
call(hprep_cmd, shell=True,stdout=ofd,stderr=efd)
call(hspec_cmd, shell=True,stdout=ofd,stderr=efd)
# All done
return
def writeRfile(self,rfile_name,STF):
'''
Write STF to rfile_name
'''
f = open(rfile_name,'wt')
ns = len(STF)
f.write('%5d%10.3f\n'%(ns,self.delta))
for i in xrange(len(STF)):
f.write('%15.7e'%STF[i])
f.write('\n')
f.close()
# All done
return
def synthKernelSDR(self,out_type,strike,dip,rake,M0,stf_type,duration=None,rfile=None,
ofd=sys.stdout,efd=sys.stderr):
'''
Calculate synthetics from pre-calculated Green's functions for a given Strike, Dip, Rake, M0 and a given STF
Args:
out_type output type ('D'=displacement, 'V'=velocity, 'A'=acceleration)
strike: Stike angle in degrees
dip: Dip angle in degrees
rake: Rake angle in degrees
M0: Moment in dyne-cm
stf_type: STF type: 'triangle', 'boxcar', 'dirac', 'rfile'=user supplied STF in rfile
duration: STF duration (optional, used if stf_type is not 'dirac' or 'rfile')
rfile: name of file including a user supplied normalized pulse
ofd: stream for standard output (optional, default=sys.stdout)
efd: stream for standard error (optional, default=sys.stdout)
'''
# Assert if input parameters are correct
if stf_type=='rfile':
assert rfile!=None, 'rfile filename should be specified (%s)'%(stf_type)
assert os.path.exists(rfile), 'Cannot read %s (no such file)'%(rfile)
if stf_type!='dirac' and stf_type!='rfile':
assert duration!=None, 'STF duration missing (%s)'%(stf_type)
# Assert if Xr, Xs and dist are correctly assigned
assert isinstance(self.Xr,np.ndarray), 'Xr is not assigned correctly (must be a (N,2) ndarray)'
assert isinstance(self.Xs,np.ndarray), 'Xs is not assigned correctly (must be a (3,) ndarray)'
assert isinstance(self.dist,np.ndarray), 'The array dist is not correct'
assert len(self.Xr)==len(self.dist), 'dist and Xr must have the same length (%d vs %d)'%(len(self.Xr),len(self.dist))
# Assign self.stat if not specified
if self.stat==None:
self.stat = []
for i in range(len(self.Xr)):
self.stat.append('STA_%d'%(i+1))
# Find unique elements of the dist array attribute
unique_dist = np.unique(self.dist)
# From the half-duration, check if the source is a dirac
if duration!=None:
half_dur = duration/2. # Half-duration
if half_dur < self.delta:
efd.write('Warning: Using half-duration<sampling rate: will use dirac STF\n')
stf_type = 'dirac'
half_dur_factor = None
else:
half_dur_factor = int(np.round(half_dur/self.delta))
# Initialize the hpulse command
hpulse_f96 = 'hpulse_file96' # hpulse output file96
if stf_type=='dirac': # Dirac
hpulse_cmd = 'hpulse96 -%c -i > %s'%(out_type,hpulse_f96)
elif stf_type=='triangle': # Triangle
hpulse_cmd = 'hpulse96 -%c -t -l %d -Z > %s'%(out_type,half_dur_factor,hpulse_f96)
elif stf_type=='rfile': # User supplied STF
hpulse_cmd = 'hpulse96 -%c -F %s > %s'%(out_type,rfile,hpulse_f96)
elif stf_type=='boxcar': # Boxcar STF
rfile = 'boxcar'
hpulse_cmd = 'hpulse96 -%c -F %s > %s'%(out_type,rfile,hpulse_f96)
# build a rfile with a boxcar
ns = int(round(duration/self.delta))
STF = np.ones(ns)/duration
self.writeRfile(rfile,STF)
else:
raise TypeError('stf_type')
# STF convolution
call(hpulse_cmd,shell=True,stdout=ofd,stderr=efd)
# Compute azimuth and backazimuth
dX = self.Xr-self.Xs[:2]
Az = np.arctan2( dX[:,0], dX[:,1])*180./np.pi
BAz = np.arctan2(-dX[:,0],-dX[:,1])*180./np.pi
# Compute data from mechanism and azimuth and convert to SAC
fsel_f96 = 'fsel_file96'
fmech_f96 = 'fmech_file96'
fsel_cmd_format = 'fsel96 -NS %d < %s > %s'
fmech_cmd_format = 'fmech96 -S %.4f -D %.4f -R %.4f -M0 %.5e -A %.4f -B %.4f < %s > %s'
for j in xrange(unique_dist.size):
for k in xrange(self.dist.size):
if self.dist[k]==unique_dist[j]:
# Select Green's functions
fsel_cmd = fsel_cmd_format%(j+1,hpulse_f96,fsel_f96)
call(fsel_cmd, shell=True,stdout=ofd,stderr=efd)
# Moment tensor product
fmech_cmd = fmech_cmd_format%(strike,dip,rake,M0,Az[k],BAz[k],fsel_f96,fmech_f96)
call(fmech_cmd, shell=True,stdout=ofd,stderr=efd)
# Conversion to sac
f96tosac_cmd = 'f96tosac '+fmech_f96 # Conversion to Sac
call(f96tosac_cmd, shell=True,stdout=ofd,stderr=efd)
# Cleanup
os.rename('B00101Z00.sac','%s_Z.SAC'%(self.stat[k]))
os.rename('B00102N00.sac','%s_N.SAC'%(self.stat[k]))
os.rename('B00103E00.sac','%s_E.SAC'%(self.stat[k]))
rm(glob('*.sac'))
rm([fsel_f96,fmech_f96])
rm(hpulse_f96)
# All done
return
def synthSDR(self,out_type,strike,dip,rake,M0,stf_type,duration=None,rfile=None,
calc_dist=True,ofd=sys.stdout,efd=sys.stderr):
'''
Calculate Synthetics from scratch for a given Strike, Dip, Rake, M0 and a given STF
Args:
out_type output type ('D'=displacement, 'V'=velocity, 'A'=acceleration)
strike: Stike angle in degrees
dip: Dip angle in degrees
rake: Rake angle in degrees
M0: Moment in dyne-cm
stf_type: STF type: 'triangle', 'boxcar', 'dirac', 'rfile'=user supplied STF in rfile
duration: STF duration (optional, used if stf_type is not 'dirac' or 'rfile')
rfile: name of file including a user supplied normalized pulse
calc_dist: if True, calculate epicentral distances (optional, default=False)
ofd: stream for standard output (optional, default=sys.stdout)
efd: stream for standard error (optional, default=sys.stdout)
'''
# Calculate distances
if calc_dist:
self.calcDist()
# Write Distance File
self.writeDistFile()
# Calculate Green's functions in the frequency domain
self.calcKernel(ofd=ofd,efd=efd)
# Calculate synthetics from pre-calculated kernels
self.synthKernelSDR(out_type,strike,dip,rake,M0,stf_type,duration,rfile,ofd=ofd,efd=efd)
self.synth = {}
for stat in self.stat:
self.synth[stat]={}
for c in 'ZNE':
sacfile = sacpy.Sac()
sacfile.read('%s_%c.SAC'%(stat,c))
# Conversion from cm -> m
sacfile.depvar *= 1.0e-2
self.synth[stat][c] = deepcopy(sacfile)
# All done
return