diff --git a/examples/tif_to_zarr_with_crs.py b/examples/tif_to_zarr_with_crs.py new file mode 100644 index 0000000..1b57999 --- /dev/null +++ b/examples/tif_to_zarr_with_crs.py @@ -0,0 +1,66 @@ +"""Create a GeoTIFF and convert it to a Zarr file with CRS metadata, that gets read by QGIS with GDAL 3.8+.""" + +# (`conda install qgis; qgis` to get qgis with GDAL 3.8+).""" +# There's an open issue to remove `attrs` in Zarr V3, though GDAL's behaviour currently relies on attrs https://github.com/zarr-developers/zarr-python/issues/1624 + +import affine +import numpy as np +import rasterio +import rioxarray as rxr + + +def get_some_test_data(bands: int, height: int, width: int) -> np.ndarray: + """Create some test data.""" + data = np.zeros((bands, height, width), dtype=np.float32) + for b in range(bands): + random_value = np.random.rand() + data[b] = np.sin(np.linspace(0, np.pi, height)[:, None] * random_value) + return data + + +def save_to_geotiff(data: np.ndarray, transform: affine.Affine, filename: str = "some.tif") -> None: + """Save data to a GeoTIFF file.""" + kwargs = { + "driver": "GTiff", + "count": data.shape[0], + "height": data.shape[1], + "width": data.shape[2], + "dtype": rasterio.float32, + "crs": "EPSG:6933", + "transform": transform, + "compress": "DEFLATE", + } + + with rasterio.open(filename, "w", **kwargs) as dst: + dst.write(data) + + +def tif_to_crs_zarr(tif_path: str, zarr_path: str, x: str = "x", y: str = "y") -> None: + """Convert a GeoTIFF file to a Zarr file with valid CRS metadata.""" + da = rxr.open_rasterio(tif_path) + name = tif_path.split(".")[0].split("/")[-1] + ds = da.to_dataset(name=name) + # get the epsg code from the tif file + epsg = ds.rio.crs.to_epsg() + + # Once your data goes beyond X, Y and 1 data variable, + # qgis let's you choose which variable to open, as it inherits gdal behavior: + # https://gdal.org/drivers/raster/zarr.html#particularities-of-the-classic-raster-api + ds = ds.drop_vars(["band", "spatial_ref"], errors="ignore") + # renamed x and y to X and Y for gdal to automatically recognize them as spatial dimensions + ds = ds.rename({x: "X", y: "Y"}) + # add CRS to the dataset following the gdal implementation + ds.some.attrs["_CRS"] = {"url": f"http://www.opengis.net/def/crs/EPSG/0/{epsg}"} + ds.to_zarr(f"{name}.zarr", mode="w", consolidated=True) + + +if __name__ == "__main__": + width, height, bands = 8192, 8192, 3 + # create affine transformation + transform = affine.Affine(10.0, 0.0, 400000.0, 0.0, -10.0, 6000000.0) + # create some test data + data = get_some_test_data(bands, height, width) + tif_filename = "some.tif" + save_to_geotiff(data, transform, filename=tif_filename) + # convert tif to zarr + tif_to_crs_zarr(tif_filename, "some.zarr", x="x", y="y")