-
Notifications
You must be signed in to change notification settings - Fork 0
/
0124. Binary Tree Maximum Path Sum.js
57 lines (45 loc) · 1.44 KB
/
0124. Binary Tree Maximum Path Sum.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
// Given a non-empty binary tree, find the maximum path sum.
// For this problem, a path is defined as any sequence of nodes from some starting node to any node in the tree along the parent-child connections. The path must contain at least one node and does not need to go through the root.
// Example 1:
// Input: [1,2,3]
// 1
// / \
// 2 3
// Output: 6
// Example 2:
// Input: [-10,9,20,null,null,15,7]
// -10
// / \
// 9 20
// / \
// 15 7
// Output: 42
// 1) 递归
// 思路:经过某一节点的最大和 = 节点值 + 经过左节点的最大和(和 0 比较) + 经过右节点的最大和(和 0 比较),遍历整个二叉树,更新这个最大值。
/**
* Definition for a binary tree node.
* function TreeNode(val) {
* this.val = val;
* this.left = this.right = null;
* }
*/
/**
* @param {TreeNode} root
* @return {number}
*/
const maxPathSum = (root) => {
let max = -Infinity
function maxPathNode (node) {
if (!node) {
return 0
}
let l = Math.max(0, maxPathNode(node.left))
let r = Math.max(0, maxPathNode(node.right))
max = Math.max(max, node.val + l + r)
return node.val + Math.max(l, r)
}
maxPathNode(root)
return max
}
// Runtime: 76 ms, faster than 57.58 % of JavaScript online submissions for Binary Tree Maximum Path Sum.
// Memory Usage: 41.3 MB, less than 60.00 % of JavaScript online submissions for Binary Tree Maximum Path Sum.