-
Notifications
You must be signed in to change notification settings - Fork 0
/
0110. Balanced Binary Tree.js
64 lines (51 loc) · 1.54 KB
/
0110. Balanced Binary Tree.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
// Given a binary tree, determine if it is height-balanced.
// For this problem, a height-balanced binary tree is defined as:
// a binary tree in which the left and right subtrees of every node differ in height by no more than 1.
// Example 1:
// Given the following tree [3,9,20,null,null,15,7]:
// 3
// / \
// 9 20
// / \
// 15 7
// Return true.
// Example 2:
// Given the following tree [1,2,2,3,3,null,null,4,4]:
// 1
// / \
// 2 2
// / \
// 3 3
// / \
// 4 4
// Return false.
// 1) 递归
// https://leetcode.com/problems/balanced-binary-tree/discuss/35691/The-bottom-up-O(N)-solution-would-be-better
// 思路:求 root 左右节点的高度(递归),如果左右节点高度差不大于 1 且左右节点也是平衡的(递归),则 root 是平衡的。
/**
* Definition for a binary tree node.
* function TreeNode(val) {
* this.val = val;
* this.left = this.right = null;
* }
*/
/**
* @param {TreeNode} root
* @return {boolean}
*/
const isBalanced = (root) => {
function depth (node) {
if (!node) {
return 0
}
return Math.max(depth(node.left), depth(node.right)) + 1
}
if (!root) {
return true
}
let left = depth(root.left)
let right = depth(root.right)
return Math.abs(left - right) <= 1 && isBalanced(root.left) && isBalanced(root.right)
}
// Runtime: 76 ms, faster than 31.92% of JavaScript online submissions for Balanced Binary Tree.
// Memory Usage: 37.7 MB, less than 28.57% of JavaScript online submissions for Balanced Binary Tree.