-
Notifications
You must be signed in to change notification settings - Fork 0
/
0040. Combination Sum II.js
60 lines (51 loc) · 1.54 KB
/
0040. Combination Sum II.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
// Given a collection of candidate numbers (candidates) and a target number (target), find all unique combinations in candidates where the candidate numbers sums to target.
// Each number in candidates may only be used once in the combination.
// Note:
// All numbers (including target) will be positive integers.
// The solution set must not contain duplicate combinations.
// Example 1:
// Input: candidates = [10,1,2,7,6,1,5], target = 8,
// A solution set is:
// [
// [1, 7],
// [1, 2, 5],
// [2, 6],
// [1, 1, 6]
// ]
// Example 2:
// Input: candidates = [2,5,2,1,2], target = 5,
// A solution set is:
// [
// [1,2,2],
// [5]
// ]
// 1) 回溯
/**
* @param {number[]} candidates
* @param {number} target
* @return {number[][]}
*/
var combinationSum2 = function(candidates, target) {
let list = []
candidates = candidates.sort((a, b) => a - b)
const backtrack = (list, tempList, nums, remain, start) => {
if (remain < 0) {
return
} else if (remain === 0) {
list.push([...tempList])
} else {
for (let i = start; i < nums.length; i++) {
if (i > start && nums[i] === nums[i - 1]) {
continue
}
tempList.push(nums[i])
backtrack(list, tempList, nums, remain - nums[i], i + 1)
tempList.pop()
}
}
}
backtrack(list, [], candidates, target, 0)
return list
}
// Runtime: 120 ms, faster than 14.56% of JavaScript online submissions for Combination Sum II.
// Memory Usage: 36.1 MB, less than 40.00% of JavaScript online submissions for Combination Sum II.