-
Notifications
You must be signed in to change notification settings - Fork 3
/
train_test.py
251 lines (211 loc) · 11 KB
/
train_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import os
import time
import argparse
import pickle
import numpy as np
import pandas as pd
import torch
from utils import *
from model import *
def settings(param=[]):
parser = argparse.ArgumentParser()
# data params
parser.add_argument('--path_in', type=str, default='./data/', help="input data path")
parser.add_argument('--path_out', type=str, default='./results/', help="output data path")
parser.add_argument('--data_name', type=str, default='NYC', help="data name")
parser.add_argument('--cat_contained', action='store_false', default=True, help="whether contain category")
parser.add_argument('--out_filename', type=str, default='', help="output data filename")
# train params
parser.add_argument('--gpu', type=str, default='0', help="GPU index to choose")
parser.add_argument('--run_num', type=int, default=10, help="run number")
parser.add_argument('--epoch_num', type=int, default=30, help="epoch number")
parser.add_argument('--batch_size', type=int, default=64, help="batch size")
parser.add_argument('--learning_rate', type=float, default=1e-4, help="learning rate")
parser.add_argument('--weight_decay', type=float, default=1e-6, help="weight decay")
parser.add_argument('--evaluate_step', type=int, default=2, help="evaluate step")
parser.add_argument('--lam_t', type=float, default=0.05, help="loss lambda time")
parser.add_argument('--lam_c', type=float, default=1, help="loss lambda category")
parser.add_argument('--lam_s', type=float, default=0.5, help="loss lambda for geographcal consistency")
# model params
# embedding
parser.add_argument('--user_embed_dim', type=int, default=20, help="user embedding dimension")
parser.add_argument('--loc_embed_dim', type=int, default=200, help="loc embedding dimension")
parser.add_argument('--tim_h_embed_dim', type=int, default=20, help="time hour embedding dimension")
parser.add_argument('--tim_w_embed_dim', type=int, default=10, help="time week embedding dimension")
parser.add_argument('--cat_embed_dim', type=int, default=100, help="category embedding dimension")
# rnn
parser.add_argument('--rnn_type', type=str, default='gru', help="rnn type")
parser.add_argument('--rnn_layer_num', type=int, default=1, help="rnn layer number")
parser.add_argument('--rnn_t_hid_dim', type=int, default=600, help="rnn hidden dimension for t")
parser.add_argument('--rnn_c_hid_dim', type=int, default=600, help="rnn hidden dimension for c")
parser.add_argument('--rnn_l_hid_dim', type=int, default=600, help="rnn hidden dimension for l")
parser.add_argument('--dropout', type=float, default=0.1, help="drop out for rnn")
if __name__ == '__main__' and param == []:
params = parser.parse_args()
else:
params = parser.parse_args(param)
if not os.path.exists(params.path_out):
os.mkdir(params.path_out)
return params
def train(params, dataset):
# dataset info
params.uid_size = len(dataset['uid_list'])
params.pid_size = len(dataset['pid_dict'])
params.cid_size = len(dataset['cid_dict']) if params.cat_contained else 0
# generate input data
data_train, train_id = dataset['train_data'], dataset['train_id']
data_test, test_id = dataset['test_data'], dataset['test_id']
pid_lat_lon_radians = torch.tensor([[0, 0]] + list(dataset['pid_lat_lon_radians'].values())).to(params.device)
# model and optimizer
model = Model(params).to(params.device)
optimizer = torch.optim.Adam(model.parameters(), lr=params.learning_rate, weight_decay=params.weight_decay)
print('==== Model is \n', model)
get_model_params(model)
print('==== Optimizer is \n', optimizer)
# iterate epoch
best_info_train = {'epoch':0, 'Recall@1':0} # best metrics
best_info_test = {'epoch':0, 'Recall@1':0} # best metrics
print('='*10, ' Training')
for epoch in range(params.epoch_num):
model.train()
# variable
loss_l_all = 0.
loss_t_all = 0.
loss_c_all = 0.
loss_s_all = 0.
loss_all = 0.
valid_all = 0
# train with batch
time_start = time.time()
print('==== Train', end=', ')
for mask_batch, target_batch, data_batch in generate_batch_data(data_train, train_id, params.device, params.batch_size, params.cat_contained):
# model forward
th_pred, c_pred, l_pred, valid_num = model(data_batch, mask_batch)
# calcuate loss
loss_t, loss_c, loss_l, loss_s = model.calculate_loss(th_pred, c_pred, l_pred, target_batch, valid_num, pid_lat_lon_radians)
loss = loss_l + params.lam_t * loss_t + params.lam_c * loss_c + params.lam_s * loss_s
valid_all += valid_num
loss_l_all += loss_l.item() * valid_num
loss_t_all += loss_t.item() * valid_num
loss_c_all += loss_c.item() * valid_num
loss_s_all += loss_s.item() * valid_num
loss_all += loss.item() * valid_num
# backward
optimizer.zero_grad()
loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), 2.0)
optimizer.step()
train_time = time.time() - time_start
loss_all /= valid_all
loss_l_all /= valid_all
loss_t_all /= valid_all
loss_c_all /= valid_all
loss_s_all /= valid_all
# evaluation
if epoch % params.evaluate_step == 0:
# evaluate with train data
print('==== Evaluate train data', end=', ')
time_start = time.time()
train_acc_l, train_acc_c, train_mse_t = evaluate(model, data_train, train_id, params)
train_eval_time = time.time() - time_start
# evaluate with test data
print('==== Evaluate test data', end=', ')
time_start = time.time()
test_acc_l, test_acc_c, test_mse_t = evaluate(model, data_test, test_id, params)
test_time = time.time() - time_start
print(f'[Epoch={epoch+1}/{params.epoch_num}], loss={loss_all:.2f}, loss_l={loss_l_all:.2f},', end=' ')
print(f'loss_t={loss_t_all:.2f}, loss_c={loss_c_all:.2f}, loss_s={loss_s_all:.2f};')
print(f'Acc_loc: train_l={train_acc_l}, test_l={test_acc_l};')
print(f'Acc_cat: train_c={train_acc_c}, test_c={test_acc_c};')
print(f'MAE_time: train_t={train_mse_t:.2f}, test_t={test_mse_t:.2f};')
print(f'Eval time cost: train={train_eval_time:.1f}s, test={test_time:.1f}s\n')
# store info
if best_info_train['Recall@1'] < train_acc_l[0]:
best_info_train['epoch'] = epoch
best_info_train['Recall@1'] = train_acc_l[0]
best_info_train['Recall@all'] = train_acc_l
best_info_train['MAE'] = train_mse_t
best_info_train['model_params'] = model.state_dict()
if best_info_test['Recall@1'] < test_acc_l[0]:
best_info_test['epoch'] = epoch
best_info_test['Recall@1'] = test_acc_l[0]
best_info_test['Recall@all'] = test_acc_l
best_info_test['MAE'] = test_mse_t
best_info_test['model_params'] = model.state_dict()
else:
print(f'[Epoch={epoch+1}/{params.epoch_num}], loss={loss_all:.2f}, loss_l={loss_l_all:.2f},', end=' ')
print(f'loss_t={loss_t_all:.2f}, loss_c={loss_c_all:.2f}, loss_s={loss_s_all:.2f};')
# evaluation
print('='*10, ' Testing')
results_l, results_c, results_t = evaluate(model, data_test, test_id, params)
print(f'Test results: loc={results_l}, cat={results_c}, tim={results_t:.2f}')
# best metrics info
print('='*10,' Run finished')
print(f'Best train results is {best_info_train["Recall@all"]} at Epoch={best_info_train["epoch"]}')
print(f'Best test results is {best_info_test["Recall@all"]} at Epoch={best_info_test["epoch"]}')
return results_l, results_c, results_t, best_info_test
def evaluate(model, data, data_id, params):
'''Evaluate model performance
'''
l_acc_all = np.zeros(3)
c_acc_all = np.zeros(3)
t_mse_all = 0.
valid_num_all = 0
model.eval()
# evaluate with batch
for mask_batch, target_batch, data_batch in generate_batch_data(data, data_id, params.device, params.batch_size, params.cat_contained):
# model forward
th_pred, c_pred, l_pred, valid_num = model(data_batch, mask_batch)
# calculate metrics
l_acc = calculate_recall(target_batch[0], l_pred)
l_acc_all += l_acc
t_mse_all += torch.nn.functional.l1_loss(th_pred.squeeze(-1), target_batch[1], reduction='sum').item()
valid_num_all += valid_num
if params.cat_contained:
c_acc = calculate_recall(target_batch[2], c_pred)
c_acc_all += c_acc
return l_acc_all / valid_num_all, c_acc_all / valid_num_all, t_mse_all / valid_num_all
if __name__ == '__main__':
print('='*20, ' Program Start')
params = settings()
params.device = torch.device(f"cuda:{params.gpu}")
print('Parameter is\n', params.__dict__)
# file name to store
FILE_NAME = [params.path_out, f'{time.strftime("%Y%m%d")}_{params.data_name}_']
FILE_NAME[1] += f'{params.out_filename}'
# Load data
print('='*20, ' Loading data')
start_time = time.time()
if params.cat_contained:
dataset = pickle.load(open(f'{params.path_in}{params.data_name}_cat.pkl', 'rb'))
else:
dataset = pickle.load(open(f'{params.path_in}{params.data_name}.pkl', 'rb'))
print(f'Finished, time cost is {time.time()-start_time:.1f}')
# metrics
metrics = pd.DataFrame()
best_info_all_run = {'epoch':0, 'Recall@1':0}
# start running
print('='*20, "Start Training")
for i in range(params.run_num):
print('='*20, f'Run {i}')
# To Revise
results, results_c, results_t, best_info_one_run = train(params, dataset)
metric_dict = {'Rec-l@1': results[0], 'Rec-l@5': results[1], 'Rec-l@10': results[2],
'MAE': results_t, 'Rec-c@1': results_c[0], 'Rec-c@5': results_c[1], 'Rec-c@10': results_c[2]}
metric_tmp = pd.DataFrame(metric_dict, index=[i])
metrics = pd.concat([metrics, metric_tmp])
if best_info_all_run['Recall@1'] < best_info_one_run['Recall@1']:
best_info_all_run = best_info_one_run.copy()
best_info_all_run['run'] = i
print('='*20, "Finished")
mean = pd.DataFrame(metrics.mean()).T
mean.index = ['mean']
std = pd.DataFrame(metrics.std()).T
std.index = ['std']
metrics = pd.concat([metrics, mean, std])
print(metrics)
# save
metrics.to_csv(f'{FILE_NAME[0]}metrics_{FILE_NAME[1]}.csv')
print('='*20, f'\nMetrics saved. File name is {FILE_NAME[0]}metrics_{FILE_NAME[1]}.csv')
torch.save(best_info_all_run["model_params"], f'{FILE_NAME[0]}model_{FILE_NAME[1]}.pkl')
print(f'Model saved (Run={best_info_all_run["run"]}, Epoch={best_info_all_run["epoch"]})')