We propose two more challenging benchmarks ShapeNet-55 and ShapeNet-34 with more diverse incomplete point clouds that can better reflect the real-world scenarios to promote future research. Our dataset is based on ShapeNetCore. Compared to existing datasets like PCN, ShapeNet-55 considers more diverse tasks (i.e., upsampling and completion of point cloud), more diverse categories (i.e., from 8 categories to 55 categories), more diverse viewpoints (i.e., from 8 viewpoints to all possible viewpoints) and more diverse levels of incompleteness (i.e., missing 25% to 75% points of the groundtruth point clouds). We also propose to benchmark the completion performance on objects from unseen categories with ShapeNet-34.
The overall directory structure should be:
│PoinTr/
├──cfgs/
├──datasets/
├──data/
│ ├──ShapeNet55-34/
│ ├──PCN/
│ ├──KITTI/
├──.......
ShapeNet55/34 Dataset and Projected-ShapeNet55/34: You can download the processed ShapeNet55/34 dataset at [BaiduCloud] (code:le04) or [Google Drive], Unzip the file under ShapeNet55-34/
.
You can download the processed Projected-ShapeNet55/34 dataset at [BaiduCloud](code:dycc) or [HuggingFace], unzip the file under ShapeNet55-34/
, cat project_shapenet_pcd.tar* | tar xvf
.
The directory structure should be:
│ShapeNet55-34/
├──projected_partial_noise/
│ ├── 02691156
│ ├── 02818832
│ ├── .......
├──shapenet_pc/
│ ├── 02691156-1a04e3eab45ca15dd86060f189eb133.npy
│ ├── 02691156-1a6ad7a24bb89733f412783097373bdc.npy
│ ├── .......
├──ShapeNet-34/
│ ├── train.txt
│ └── test.txt
├──ShapeNet-55/
│ ├── train.txt
│ └── test.txt
├──ShapeNet-Unseen21/
│ └── test.txt
├──Projected_ShapeNet-34_noise/
│ ├── train.txt
│ └── test.txt
├──Projected_ShapeNet-55_noise/
│ ├── train.txt
│ └── test.txt
├──Projected_ShapeNet-Unseen21_noise/
└── test.txt
PCN Dataset: You can download the processed PCN dataset from this url or BaiduYun(code: hg24 ). The directory structure should be
│PCN/
├──train/
│ ├── complete
│ │ ├── 02691156
│ │ │ ├── 1a04e3eab45ca15dd86060f189eb133.pcd
│ │ │ ├── .......
│ │ ├── .......
│ ├── partial
│ │ ├── 02691156
│ │ │ ├── 1a04e3eab45ca15dd86060f189eb133
│ │ │ │ ├── 00.pcd
│ │ │ │ ├── 01.pcd
│ │ │ │ ├── .......
│ │ │ │ └── 07.pcd
│ │ │ ├── .......
│ │ ├── .......
├──test/
│ ├── complete
│ │ ├── 02691156
│ │ │ ├── 1d63eb2b1f78aa88acf77e718d93f3e1.pcd
│ │ │ ├── .......
│ │ ├── .......
│ ├── partial
│ │ ├── 02691156
│ │ │ ├── 1d63eb2b1f78aa88acf77e718d93f3e1
│ │ │ │ └── 00.pcd
│ │ │ ├── .......
│ │ ├── .......
├──val/
│ ├── complete
│ │ ├── 02691156
│ │ │ ├── 4bae467a3dad502b90b1d6deb98feec6.pcd
│ │ │ ├── .......
│ │ ├── .......
│ ├── partial
│ │ ├── 02691156
│ │ │ ├── 4bae467a3dad502b90b1d6deb98feec6
│ │ │ │ └── 00.pcd
│ │ │ ├── .......
│ │ ├── .......
├──PCN.json
└──category.txt
KITTI: You can download the KITTI dataset from this url. The directory structure should be
│KITTI/
├──bboxes/
│ ├── frame_0_car_0.txt
│ ├── .......
├──cars/
│ ├── frame_0_car_0.pcd
│ ├── .......
├──tracklets/
│ ├── tracklet_0.txt
│ ├── .......
├──KITTI.json