R3Det is based on Focal Loss for Dense Object Detection, and it is completed by YangXue.
More results and trained models are available in the MODEL_ZOO.md.
Model | Backbone | Training data | Val data | mAP | GPU | Image/GPU | Anchor | Reg. Loss | lr schd | Data Augmentation | Configs |
---|---|---|---|---|---|---|---|---|---|---|---|
RetinaNet (baseline) | ResNet50_v1d 600->800 | DOTA1.0 trainval | DOTA1.0 test | 62.22 | 1X GeForce RTX 2080 Ti | 1 | H | smooth L1 | 1x | No | cfgs_res50_dota_v4.py |
RetinaNet (baseline) | ResNet50_v1d 600->800 | DOTA1.0 trainval | DOTA1.0 test | 62.79 | 8X GeForce RTX 2080 Ti | 1 | H | smooth L1 | 2x | No | cfgs_res50_dota_v8.py |
RetinaNet (baseline) | ResNet101_v1d 600->800 | DOTA1.0 trainval | DOTA1.0 test | 64.19 | 1X GeForce RTX 2080 Ti | 1 | H | smooth L1 | 1x | No | cfgs_res101_dota_v9.py |
RetinaNet (baseline) | ResNet152_v1d 600->800 | DOTA1.0 trainval | DOTA1.0 test | 65.79 | 8X GeForce RTX 2080 Ti | 1 | H | smooth L1 | 2x | No | cfgs_res152_dota_v12.py |
RetinaNet (baseline) | ResNet50_v1d 600->800 | DOTA1.0 trainval | DOTA1.0 test | 61.94 | 1X GeForce RTX 2080 Ti | 1 | R | smooth L1 | 1x | No | cfgs_res50_dota_v1.py |
RetinaNet (baseline) | ResNet50_v1d 600->800 | DOTA1.0 trainval | DOTA1.0 test | 62.25 | 8X GeForce RTX 2080 Ti | 1 | R | smooth L1 | 2x | No | cfgs_res50_dota_v10.py |
RetinaNet | ResNet50_v1d 600->800 | DOTA1.0 trainval | DOTA1.0 test | 68.65 | 1X GeForce RTX 2080 Ti | 1 | R | iou-smooth L1 | 1x | No | cfgs_res50_dota_v5.py |
R3Det | ResNet50_v1d 600->800 | DOTA1.0 trainval | DOTA1.0 test | 65.73 | 8X GeForce RTX 2080 Ti | 1 | H + R | smooth L1 | 2x | No | cfgs_res50_dota_r3det_v1.py |
R3Det* | ResNet50_v1d 600->800 | DOTA1.0 trainval | DOTA1.0 test | 67.20 | 8X GeForce RTX 2080 Ti | 1 | H + R | smooth L1 | 2x | No | cfgs_res50_dota_r3det_v2.py |
R3Det | ResNet101_v1d 600->800 | DOTA1.0 trainval | DOTA1.0 test | 71.69 | 8X GeForce RTX 2080 Ti | 1 | H + R | smooth L1 | 3x | Yes | - |
R3Det | ResNet152_v1d 600->800 | DOTA1.0 trainval | DOTA1.0 test | 72.81 | 8X GeForce RTX 2080 Ti | 1 | H + R | smooth L1 | 4x | Yes | - |
R3Det* | ResNet152_v1d 600->800 | DOTA1.0 trainval | DOTA1.0 test | 73.74 | 8X GeForce RTX 2080 Ti | 1 | H + R | smooth L1 | 4x | Yes | - |
R3Det++ | ResNet50_v1d 600->800 | DOTA1.0 trainval | DOTA1.0 test | 68.54 | 8X GeForce RTX 2080 Ti | 1 | H + R | smooth L1 | 2x | No | cfgs_res50_dota_r3det_plusplus_v2.py |
R3Det++ | ResNet152_v1d 600->800 | DOTA1.0 trainval | DOTA1.0 test | 74.41 | 8X GeForce RTX 2080 Ti | 1 | H + R | smooth L1 | 4x | Yes | - |
R3Det++ | ResNet152_v1d MS | DOTA1.0 trainval | DOTA1.0 test | 76.56 | 4X GeForce RTX 2080 Ti | 1 | H + R + more | smooth L1 | 6x | Yes | cfgs_res152_dota_r3det_plusplus_v1.py |
R3Det*: R3Det with two refinement stages The performance of all models comes from the source paper.
docker images: docker pull yangxue2docker/yx-tf-det:tensorflow1.13.1-cuda10-gpu-py3
1、python3.5 (anaconda recommend)
2、cuda >= 10.0
3、opencv(cv2)
4、tfplot 0.2.0 (optional)
5、tensorflow 1.13
1、Please download resnet50_v1, resnet101_v1 pre-trained models on Imagenet, put it to data/pretrained_weights.
2、(Recommend in this repo) Or you can choose to use a better backbone, refer to gluon2TF.
- Baidu Drive, password: 5ht9.
- Google Drive
cd $PATH_ROOT/libs/box_utils/cython_utils
python setup.py build_ext --inplace (or make)
cd $PATH_ROOT/libs/box_utils/
python setup.py build_ext --inplace
1、If you want to train your own data, please note:
(1) Modify parameters (such as CLASS_NUM, DATASET_NAME, VERSION, etc.) in $PATH_ROOT/libs/configs/cfgs.py
(2) Add category information in $PATH_ROOT/libs/label_name_dict/lable_dict.py
(3) Add data_name to $PATH_ROOT/data/io/read_tfrecord.py
2、Make tfrecord
For DOTA dataset:
cd $PATH_ROOT\data\io\DOTA
python data_crop.py
cd $PATH_ROOT/data/io/
python convert_data_to_tfrecord.py --VOC_dir='/PATH/TO/DOTA/'
--xml_dir='labeltxt'
--image_dir='images'
--save_name='train'
--img_format='.png'
--dataset='DOTA'
3、Multi-gpu train
cd $PATH_ROOT/tools
python multi_gpu_train_r3det.py
cd $PATH_ROOT/tools
python test_dota_r3det.py --test_dir='/PATH/TO/IMAGES/'
--gpus=0,1,2,3,4,5,6,7
cd $PATH_ROOT/output/summary
tensorboard --logdir=.
If this is useful for your research, please consider cite.
@article{yang2019r3det,
title={R3Det: Refined Single-Stage Detector with Feature Refinement for Rotating Object},
author={Yang, Xue and Liu, Qingqing and Yan, Junchi and Li, Ang and Zhang, Zhiqiang and Yu, Gang},
journal={arXiv preprint arXiv:1908.05612},
year={2019}
}
@inproceedings{xia2018dota,
title={DOTA: A large-scale dataset for object detection in aerial images},
author={Xia, Gui-Song and Bai, Xiang and Ding, Jian and Zhu, Zhen and Belongie, Serge and Luo, Jiebo and Datcu, Mihai and Pelillo, Marcello and Zhang, Liangpei},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
pages={3974--3983},
year={2018}
}
1、https://github.com/endernewton/tf-faster-rcnn
2、https://github.com/zengarden/light_head_rcnn
3、https://github.com/tensorflow/models/tree/master/research/object_detection
4、https://github.com/fizyr/keras-retinanet