forked from SaschaWillems/Vulkan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
triangle.cpp
1181 lines (1048 loc) · 56.1 KB
/
triangle.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Vulkan Example - Basic indexed triangle rendering
*
* Note:
* This is a "pedal to the metal" example to show off how to get Vulkan up and displaying something
* Contrary to the other examples, this one won't make use of helper functions or initializers
* Except in a few cases (swap chain setup e.g.)
*
* Copyright (C) 2016-2023 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <fstream>
#include <vector>
#include <exception>
#define GLM_FORCE_RADIANS
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <vulkan/vulkan.h>
#include "vulkanexamplebase.h"
// We want to keep GPU and CPU busy. To do that we may start building a new command buffer while the previous one is still being executed
// This number defines how many frames may be worked on simultaneously at once
// Increasing this number may improve performance but will also introduce additional latency
#define MAX_CONCURRENT_FRAMES 2
class VulkanExample : public VulkanExampleBase
{
public:
// Vertex layout used in this example
struct Vertex {
float position[3];
float color[3];
};
// Vertex buffer and attributes
struct {
VkDeviceMemory memory{ VK_NULL_HANDLE }; // Handle to the device memory for this buffer
VkBuffer buffer; // Handle to the Vulkan buffer object that the memory is bound to
} vertices;
// Index buffer
struct {
VkDeviceMemory memory{ VK_NULL_HANDLE };
VkBuffer buffer;
uint32_t count{ 0 };
} indices;
// Uniform buffer block object
struct UniformBuffer {
VkDeviceMemory memory;
VkBuffer buffer;
// The descriptor set stores the resources bound to the binding points in a shader
// It connects the binding points of the different shaders with the buffers and images used for those bindings
VkDescriptorSet descriptorSet;
// We keep a pointer to the mapped buffer, so we can easily update it's contents via a memcpy
uint8_t* mapped{ nullptr };
};
// We use one UBO per frame, so we can have a frame overlap and make sure that uniforms aren't updated while still in use
std::array<UniformBuffer, MAX_CONCURRENT_FRAMES> uniformBuffers;
// For simplicity we use the same uniform block layout as in the shader:
//
// layout(set = 0, binding = 0) uniform UBO
// {
// mat4 projectionMatrix;
// mat4 modelMatrix;
// mat4 viewMatrix;
// } ubo;
//
// This way we can just memcopy the ubo data to the ubo
// Note: You should use data types that align with the GPU in order to avoid manual padding (vec4, mat4)
struct ShaderData {
glm::mat4 projectionMatrix;
glm::mat4 modelMatrix;
glm::mat4 viewMatrix;
};
// The pipeline layout is used by a pipeline to access the descriptor sets
// It defines interface (without binding any actual data) between the shader stages used by the pipeline and the shader resources
// A pipeline layout can be shared among multiple pipelines as long as their interfaces match
VkPipelineLayout pipelineLayout{ VK_NULL_HANDLE };
// Pipelines (often called "pipeline state objects") are used to bake all states that affect a pipeline
// While in OpenGL every state can be changed at (almost) any time, Vulkan requires to layout the graphics (and compute) pipeline states upfront
// So for each combination of non-dynamic pipeline states you need a new pipeline (there are a few exceptions to this not discussed here)
// Even though this adds a new dimension of planning ahead, it's a great opportunity for performance optimizations by the driver
VkPipeline pipeline{ VK_NULL_HANDLE };
// The descriptor set layout describes the shader binding layout (without actually referencing descriptor)
// Like the pipeline layout it's pretty much a blueprint and can be used with different descriptor sets as long as their layout matches
VkDescriptorSetLayout descriptorSetLayout{ VK_NULL_HANDLE };
// Synchronization primitives
// Synchronization is an important concept of Vulkan that OpenGL mostly hid away. Getting this right is crucial to using Vulkan.
// Semaphores are used to coordinate operations within the graphics queue and ensure correct command ordering
std::array<VkSemaphore, MAX_CONCURRENT_FRAMES> presentCompleteSemaphores{};
std::array<VkSemaphore, MAX_CONCURRENT_FRAMES> renderCompleteSemaphores{};
VkCommandPool commandPool{ VK_NULL_HANDLE };
std::array<VkCommandBuffer, MAX_CONCURRENT_FRAMES> commandBuffers{};
std::array<VkFence, MAX_CONCURRENT_FRAMES> waitFences{};
// To select the correct sync objects, we need to keep track of the current frame
uint32_t currentFrame{ 0 };
VulkanExample() : VulkanExampleBase()
{
title = "Vulkan Example - Basic indexed triangle";
// To keep things simple, we don't use the UI overlay from the framework
settings.overlay = false;
// Setup a default look-at camera
camera.type = Camera::CameraType::lookat;
camera.setPosition(glm::vec3(0.0f, 0.0f, -2.5f));
camera.setRotation(glm::vec3(0.0f));
camera.setPerspective(60.0f, (float)width / (float)height, 1.0f, 256.0f);
// Values not set here are initialized in the base class constructor
}
~VulkanExample()
{
// Clean up used Vulkan resources
// Note: Inherited destructor cleans up resources stored in base class
vkDestroyPipeline(device, pipeline, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
vkDestroyBuffer(device, vertices.buffer, nullptr);
vkFreeMemory(device, vertices.memory, nullptr);
vkDestroyBuffer(device, indices.buffer, nullptr);
vkFreeMemory(device, indices.memory, nullptr);
vkDestroyCommandPool(device, commandPool, nullptr);
for (uint32_t i = 0; i < MAX_CONCURRENT_FRAMES; i++) {
vkDestroyFence(device, waitFences[i], nullptr);
vkDestroySemaphore(device, presentCompleteSemaphores[i], nullptr);
vkDestroySemaphore(device, renderCompleteSemaphores[i], nullptr);
vkDestroyBuffer(device, uniformBuffers[i].buffer, nullptr);
vkFreeMemory(device, uniformBuffers[i].memory, nullptr);
}
}
// This function is used to request a device memory type that supports all the property flags we request (e.g. device local, host visible)
// Upon success it will return the index of the memory type that fits our requested memory properties
// This is necessary as implementations can offer an arbitrary number of memory types with different
// memory properties.
// You can check https://vulkan.gpuinfo.org/ for details on different memory configurations
uint32_t getMemoryTypeIndex(uint32_t typeBits, VkMemoryPropertyFlags properties)
{
// Iterate over all memory types available for the device used in this example
for (uint32_t i = 0; i < deviceMemoryProperties.memoryTypeCount; i++)
{
if ((typeBits & 1) == 1)
{
if ((deviceMemoryProperties.memoryTypes[i].propertyFlags & properties) == properties)
{
return i;
}
}
typeBits >>= 1;
}
throw "Could not find a suitable memory type!";
}
// Create the per-frame (in flight) sVulkan synchronization primitives used in this example
void createSynchronizationPrimitives()
{
// Semaphores are used for correct command ordering within a queue
VkSemaphoreCreateInfo semaphoreCI{};
semaphoreCI.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
// Fences are used to check draw command buffer completion on the host
VkFenceCreateInfo fenceCI{};
fenceCI.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
// Create the fences in signaled state (so we don't wait on first render of each command buffer)
fenceCI.flags = VK_FENCE_CREATE_SIGNALED_BIT;
for (uint32_t i = 0; i < MAX_CONCURRENT_FRAMES; i++) {
// Semaphore used to ensure that image presentation is complete before starting to submit again
VK_CHECK_RESULT(vkCreateSemaphore(device, &semaphoreCI, nullptr, &presentCompleteSemaphores[i]));
// Semaphore used to ensure that all commands submitted have been finished before submitting the image to the queue
VK_CHECK_RESULT(vkCreateSemaphore(device, &semaphoreCI, nullptr, &renderCompleteSemaphores[i]));
// Fence used to ensure that command buffer has completed exection before using it again
VK_CHECK_RESULT(vkCreateFence(device, &fenceCI, nullptr, &waitFences[i]));
}
}
void createCommandBuffers()
{
// All command buffers are allocated from a command pool
VkCommandPoolCreateInfo commandPoolCI{};
commandPoolCI.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
commandPoolCI.queueFamilyIndex = swapChain.queueNodeIndex;
commandPoolCI.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
VK_CHECK_RESULT(vkCreateCommandPool(device, &commandPoolCI, nullptr, &commandPool));
// Allocate one command buffer per max. concurrent frame from above pool
VkCommandBufferAllocateInfo cmdBufAllocateInfo = vks::initializers::commandBufferAllocateInfo(commandPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY, MAX_CONCURRENT_FRAMES);
VK_CHECK_RESULT(vkAllocateCommandBuffers(device, &cmdBufAllocateInfo, commandBuffers.data()));
}
// Prepare vertex and index buffers for an indexed triangle
// Also uploads them to device local memory using staging and initializes vertex input and attribute binding to match the vertex shader
void createVertexBuffer()
{
// A note on memory management in Vulkan in general:
// This is a very complex topic and while it's fine for an example application to small individual memory allocations that is not
// what should be done a real-world application, where you should allocate large chunks of memory at once instead.
// Setup vertices
std::vector<Vertex> vertexBuffer{
{ { 1.0f, 1.0f, 0.0f }, { 1.0f, 0.0f, 0.0f } },
{ { -1.0f, 1.0f, 0.0f }, { 0.0f, 1.0f, 0.0f } },
{ { 0.0f, -1.0f, 0.0f }, { 0.0f, 0.0f, 1.0f } }
};
uint32_t vertexBufferSize = static_cast<uint32_t>(vertexBuffer.size()) * sizeof(Vertex);
// Setup indices
std::vector<uint32_t> indexBuffer{ 0, 1, 2 };
indices.count = static_cast<uint32_t>(indexBuffer.size());
uint32_t indexBufferSize = indices.count * sizeof(uint32_t);
VkMemoryAllocateInfo memAlloc{};
memAlloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
VkMemoryRequirements memReqs;
// Static data like vertex and index buffer should be stored on the device memory for optimal (and fastest) access by the GPU
//
// To achieve this we use so-called "staging buffers" :
// - Create a buffer that's visible to the host (and can be mapped)
// - Copy the data to this buffer
// - Create another buffer that's local on the device (VRAM) with the same size
// - Copy the data from the host to the device using a command buffer
// - Delete the host visible (staging) buffer
// - Use the device local buffers for rendering
//
// Note: On unified memory architectures where host (CPU) and GPU share the same memory, staging is not necessary
// To keep this sample easy to follow, there is no check for that in place
struct StagingBuffer {
VkDeviceMemory memory;
VkBuffer buffer;
};
struct {
StagingBuffer vertices;
StagingBuffer indices;
} stagingBuffers;
void* data;
// Vertex buffer
VkBufferCreateInfo vertexBufferInfoCI{};
vertexBufferInfoCI.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
vertexBufferInfoCI.size = vertexBufferSize;
// Buffer is used as the copy source
vertexBufferInfoCI.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
// Create a host-visible buffer to copy the vertex data to (staging buffer)
VK_CHECK_RESULT(vkCreateBuffer(device, &vertexBufferInfoCI, nullptr, &stagingBuffers.vertices.buffer));
vkGetBufferMemoryRequirements(device, stagingBuffers.vertices.buffer, &memReqs);
memAlloc.allocationSize = memReqs.size;
// Request a host visible memory type that can be used to copy our data do
// Also request it to be coherent, so that writes are visible to the GPU right after unmapping the buffer
memAlloc.memoryTypeIndex = getMemoryTypeIndex(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &stagingBuffers.vertices.memory));
// Map and copy
VK_CHECK_RESULT(vkMapMemory(device, stagingBuffers.vertices.memory, 0, memAlloc.allocationSize, 0, &data));
memcpy(data, vertexBuffer.data(), vertexBufferSize);
vkUnmapMemory(device, stagingBuffers.vertices.memory);
VK_CHECK_RESULT(vkBindBufferMemory(device, stagingBuffers.vertices.buffer, stagingBuffers.vertices.memory, 0));
// Create a device local buffer to which the (host local) vertex data will be copied and which will be used for rendering
vertexBufferInfoCI.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
VK_CHECK_RESULT(vkCreateBuffer(device, &vertexBufferInfoCI, nullptr, &vertices.buffer));
vkGetBufferMemoryRequirements(device, vertices.buffer, &memReqs);
memAlloc.allocationSize = memReqs.size;
memAlloc.memoryTypeIndex = getMemoryTypeIndex(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &vertices.memory));
VK_CHECK_RESULT(vkBindBufferMemory(device, vertices.buffer, vertices.memory, 0));
// Index buffer
VkBufferCreateInfo indexbufferCI{};
indexbufferCI.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
indexbufferCI.size = indexBufferSize;
indexbufferCI.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
// Copy index data to a buffer visible to the host (staging buffer)
VK_CHECK_RESULT(vkCreateBuffer(device, &indexbufferCI, nullptr, &stagingBuffers.indices.buffer));
vkGetBufferMemoryRequirements(device, stagingBuffers.indices.buffer, &memReqs);
memAlloc.allocationSize = memReqs.size;
memAlloc.memoryTypeIndex = getMemoryTypeIndex(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &stagingBuffers.indices.memory));
VK_CHECK_RESULT(vkMapMemory(device, stagingBuffers.indices.memory, 0, indexBufferSize, 0, &data));
memcpy(data, indexBuffer.data(), indexBufferSize);
vkUnmapMemory(device, stagingBuffers.indices.memory);
VK_CHECK_RESULT(vkBindBufferMemory(device, stagingBuffers.indices.buffer, stagingBuffers.indices.memory, 0));
// Create destination buffer with device only visibility
indexbufferCI.usage = VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
VK_CHECK_RESULT(vkCreateBuffer(device, &indexbufferCI, nullptr, &indices.buffer));
vkGetBufferMemoryRequirements(device, indices.buffer, &memReqs);
memAlloc.allocationSize = memReqs.size;
memAlloc.memoryTypeIndex = getMemoryTypeIndex(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &indices.memory));
VK_CHECK_RESULT(vkBindBufferMemory(device, indices.buffer, indices.memory, 0));
// Buffer copies have to be submitted to a queue, so we need a command buffer for them
// Note: Some devices offer a dedicated transfer queue (with only the transfer bit set) that may be faster when doing lots of copies
VkCommandBuffer copyCmd;
VkCommandBufferAllocateInfo cmdBufAllocateInfo{};
cmdBufAllocateInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
cmdBufAllocateInfo.commandPool = commandPool;
cmdBufAllocateInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
cmdBufAllocateInfo.commandBufferCount = 1;
VK_CHECK_RESULT(vkAllocateCommandBuffers(device, &cmdBufAllocateInfo, ©Cmd));
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VK_CHECK_RESULT(vkBeginCommandBuffer(copyCmd, &cmdBufInfo));
// Put buffer region copies into command buffer
VkBufferCopy copyRegion{};
// Vertex buffer
copyRegion.size = vertexBufferSize;
vkCmdCopyBuffer(copyCmd, stagingBuffers.vertices.buffer, vertices.buffer, 1, ©Region);
// Index buffer
copyRegion.size = indexBufferSize;
vkCmdCopyBuffer(copyCmd, stagingBuffers.indices.buffer, indices.buffer, 1, ©Region);
VK_CHECK_RESULT(vkEndCommandBuffer(copyCmd));
// Submit the command buffer to the queue to finish the copy
VkSubmitInfo submitInfo{};
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = ©Cmd;
// Create fence to ensure that the command buffer has finished executing
VkFenceCreateInfo fenceCI{};
fenceCI.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
fenceCI.flags = 0;
VkFence fence;
VK_CHECK_RESULT(vkCreateFence(device, &fenceCI, nullptr, &fence));
// Submit to the queue
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, fence));
// Wait for the fence to signal that command buffer has finished executing
VK_CHECK_RESULT(vkWaitForFences(device, 1, &fence, VK_TRUE, DEFAULT_FENCE_TIMEOUT));
vkDestroyFence(device, fence, nullptr);
vkFreeCommandBuffers(device, commandPool, 1, ©Cmd);
// Destroy staging buffers
// Note: Staging buffer must not be deleted before the copies have been submitted and executed
vkDestroyBuffer(device, stagingBuffers.vertices.buffer, nullptr);
vkFreeMemory(device, stagingBuffers.vertices.memory, nullptr);
vkDestroyBuffer(device, stagingBuffers.indices.buffer, nullptr);
vkFreeMemory(device, stagingBuffers.indices.memory, nullptr);
}
// Descriptors are allocated from a pool, that tells the implementation how many and what types of descriptors we are going to use (at maximum)
void createDescriptorPool()
{
// We need to tell the API the number of max. requested descriptors per type
VkDescriptorPoolSize descriptorTypeCounts[1];
// This example only one descriptor type (uniform buffer)
descriptorTypeCounts[0].type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
// We have one buffer (and as such descriptor) per frame
descriptorTypeCounts[0].descriptorCount = MAX_CONCURRENT_FRAMES;
// For additional types you need to add new entries in the type count list
// E.g. for two combined image samplers :
// typeCounts[1].type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
// typeCounts[1].descriptorCount = 2;
// Create the global descriptor pool
// All descriptors used in this example are allocated from this pool
VkDescriptorPoolCreateInfo descriptorPoolCI{};
descriptorPoolCI.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
descriptorPoolCI.pNext = nullptr;
descriptorPoolCI.poolSizeCount = 1;
descriptorPoolCI.pPoolSizes = descriptorTypeCounts;
// Set the max. number of descriptor sets that can be requested from this pool (requesting beyond this limit will result in an error)
// Our sample will create one set per uniform buffer per frame
descriptorPoolCI.maxSets = MAX_CONCURRENT_FRAMES;
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolCI, nullptr, &descriptorPool));
}
// Descriptor set layouts define the interface between our application and the shader
// Basically connects the different shader stages to descriptors for binding uniform buffers, image samplers, etc.
// So every shader binding should map to one descriptor set layout binding
void createDescriptorSetLayout()
{
// Binding 0: Uniform buffer (Vertex shader)
VkDescriptorSetLayoutBinding layoutBinding{};
layoutBinding.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
layoutBinding.descriptorCount = 1;
layoutBinding.stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
layoutBinding.pImmutableSamplers = nullptr;
VkDescriptorSetLayoutCreateInfo descriptorLayoutCI{};
descriptorLayoutCI.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
descriptorLayoutCI.pNext = nullptr;
descriptorLayoutCI.bindingCount = 1;
descriptorLayoutCI.pBindings = &layoutBinding;
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayoutCI, nullptr, &descriptorSetLayout));
// Create the pipeline layout that is used to generate the rendering pipelines that are based on this descriptor set layout
// In a more complex scenario you would have different pipeline layouts for different descriptor set layouts that could be reused
VkPipelineLayoutCreateInfo pipelineLayoutCI{};
pipelineLayoutCI.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
pipelineLayoutCI.pNext = nullptr;
pipelineLayoutCI.setLayoutCount = 1;
pipelineLayoutCI.pSetLayouts = &descriptorSetLayout;
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCI, nullptr, &pipelineLayout));
}
// Shaders access data using descriptor sets that "point" at our uniform buffers
// The descriptor sets make use of the descriptor set layouts created above
void createDescriptorSets()
{
// Allocate one descriptor set per frame from the global descriptor pool
for (uint32_t i = 0; i < MAX_CONCURRENT_FRAMES; i++) {
VkDescriptorSetAllocateInfo allocInfo{};
allocInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
allocInfo.descriptorPool = descriptorPool;
allocInfo.descriptorSetCount = 1;
allocInfo.pSetLayouts = &descriptorSetLayout;
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &uniformBuffers[i].descriptorSet));
// Update the descriptor set determining the shader binding points
// For every binding point used in a shader there needs to be one
// descriptor set matching that binding point
VkWriteDescriptorSet writeDescriptorSet{};
// The buffer's information is passed using a descriptor info structure
VkDescriptorBufferInfo bufferInfo{};
bufferInfo.buffer = uniformBuffers[i].buffer;
bufferInfo.range = sizeof(ShaderData);
// Binding 0 : Uniform buffer
writeDescriptorSet.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
writeDescriptorSet.dstSet = uniformBuffers[i].descriptorSet;
writeDescriptorSet.descriptorCount = 1;
writeDescriptorSet.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
writeDescriptorSet.pBufferInfo = &bufferInfo;
writeDescriptorSet.dstBinding = 0;
vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, nullptr);
}
}
// Create the depth (and stencil) buffer attachments used by our framebuffers
// Note: Override of virtual function in the base class and called from within VulkanExampleBase::prepare
void setupDepthStencil()
{
// Create an optimal image used as the depth stencil attachment
VkImageCreateInfo imageCI{};
imageCI.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
imageCI.imageType = VK_IMAGE_TYPE_2D;
imageCI.format = depthFormat;
// Use example's height and width
imageCI.extent = { width, height, 1 };
imageCI.mipLevels = 1;
imageCI.arrayLayers = 1;
imageCI.samples = VK_SAMPLE_COUNT_1_BIT;
imageCI.tiling = VK_IMAGE_TILING_OPTIMAL;
imageCI.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
imageCI.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
VK_CHECK_RESULT(vkCreateImage(device, &imageCI, nullptr, &depthStencil.image));
// Allocate memory for the image (device local) and bind it to our image
VkMemoryAllocateInfo memAlloc{};
memAlloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
VkMemoryRequirements memReqs;
vkGetImageMemoryRequirements(device, depthStencil.image, &memReqs);
memAlloc.allocationSize = memReqs.size;
memAlloc.memoryTypeIndex = getMemoryTypeIndex(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &depthStencil.mem));
VK_CHECK_RESULT(vkBindImageMemory(device, depthStencil.image, depthStencil.mem, 0));
// Create a view for the depth stencil image
// Images aren't directly accessed in Vulkan, but rather through views described by a subresource range
// This allows for multiple views of one image with differing ranges (e.g. for different layers)
VkImageViewCreateInfo depthStencilViewCI{};
depthStencilViewCI.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
depthStencilViewCI.viewType = VK_IMAGE_VIEW_TYPE_2D;
depthStencilViewCI.format = depthFormat;
depthStencilViewCI.subresourceRange = {};
depthStencilViewCI.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
// Stencil aspect should only be set on depth + stencil formats (VK_FORMAT_D16_UNORM_S8_UINT..VK_FORMAT_D32_SFLOAT_S8_UINT)
if (depthFormat >= VK_FORMAT_D16_UNORM_S8_UINT) {
depthStencilViewCI.subresourceRange.aspectMask |= VK_IMAGE_ASPECT_STENCIL_BIT;
}
depthStencilViewCI.subresourceRange.baseMipLevel = 0;
depthStencilViewCI.subresourceRange.levelCount = 1;
depthStencilViewCI.subresourceRange.baseArrayLayer = 0;
depthStencilViewCI.subresourceRange.layerCount = 1;
depthStencilViewCI.image = depthStencil.image;
VK_CHECK_RESULT(vkCreateImageView(device, &depthStencilViewCI, nullptr, &depthStencil.view));
}
// Create a frame buffer for each swap chain image
// Note: Override of virtual function in the base class and called from within VulkanExampleBase::prepare
void setupFrameBuffer()
{
// Create a frame buffer for every image in the swapchain
frameBuffers.resize(swapChain.imageCount);
for (size_t i = 0; i < frameBuffers.size(); i++)
{
std::array<VkImageView, 2> attachments;
// Color attachment is the view of the swapchain image
attachments[0] = swapChain.buffers[i].view;
// Depth/Stencil attachment is the same for all frame buffers due to how depth works with current GPUs
attachments[1] = depthStencil.view;
VkFramebufferCreateInfo frameBufferCI{};
frameBufferCI.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
// All frame buffers use the same renderpass setup
frameBufferCI.renderPass = renderPass;
frameBufferCI.attachmentCount = static_cast<uint32_t>(attachments.size());
frameBufferCI.pAttachments = attachments.data();
frameBufferCI.width = width;
frameBufferCI.height = height;
frameBufferCI.layers = 1;
// Create the framebuffer
VK_CHECK_RESULT(vkCreateFramebuffer(device, &frameBufferCI, nullptr, &frameBuffers[i]));
}
}
// Render pass setup
// Render passes are a new concept in Vulkan. They describe the attachments used during rendering and may contain multiple subpasses with attachment dependencies
// This allows the driver to know up-front what the rendering will look like and is a good opportunity to optimize especially on tile-based renderers (with multiple subpasses)
// Using sub pass dependencies also adds implicit layout transitions for the attachment used, so we don't need to add explicit image memory barriers to transform them
// Note: Override of virtual function in the base class and called from within VulkanExampleBase::prepare
void setupRenderPass()
{
// This example will use a single render pass with one subpass
// Descriptors for the attachments used by this renderpass
std::array<VkAttachmentDescription, 2> attachments{};
// Color attachment
attachments[0].format = swapChain.colorFormat; // Use the color format selected by the swapchain
attachments[0].samples = VK_SAMPLE_COUNT_1_BIT; // We don't use multi sampling in this example
attachments[0].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; // Clear this attachment at the start of the render pass
attachments[0].storeOp = VK_ATTACHMENT_STORE_OP_STORE; // Keep its contents after the render pass is finished (for displaying it)
attachments[0].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; // We don't use stencil, so don't care for load
attachments[0].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; // Same for store
attachments[0].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; // Layout at render pass start. Initial doesn't matter, so we use undefined
attachments[0].finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR; // Layout to which the attachment is transitioned when the render pass is finished
// As we want to present the color buffer to the swapchain, we transition to PRESENT_KHR
// Depth attachment
attachments[1].format = depthFormat; // A proper depth format is selected in the example base
attachments[1].samples = VK_SAMPLE_COUNT_1_BIT;
attachments[1].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; // Clear depth at start of first subpass
attachments[1].storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; // We don't need depth after render pass has finished (DONT_CARE may result in better performance)
attachments[1].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; // No stencil
attachments[1].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; // No Stencil
attachments[1].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; // Layout at render pass start. Initial doesn't matter, so we use undefined
attachments[1].finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; // Transition to depth/stencil attachment
// Setup attachment references
VkAttachmentReference colorReference{};
colorReference.attachment = 0; // Attachment 0 is color
colorReference.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; // Attachment layout used as color during the subpass
VkAttachmentReference depthReference{};
depthReference.attachment = 1; // Attachment 1 is color
depthReference.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; // Attachment used as depth/stencil used during the subpass
// Setup a single subpass reference
VkSubpassDescription subpassDescription{};
subpassDescription.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpassDescription.colorAttachmentCount = 1; // Subpass uses one color attachment
subpassDescription.pColorAttachments = &colorReference; // Reference to the color attachment in slot 0
subpassDescription.pDepthStencilAttachment = &depthReference; // Reference to the depth attachment in slot 1
subpassDescription.inputAttachmentCount = 0; // Input attachments can be used to sample from contents of a previous subpass
subpassDescription.pInputAttachments = nullptr; // (Input attachments not used by this example)
subpassDescription.preserveAttachmentCount = 0; // Preserved attachments can be used to loop (and preserve) attachments through subpasses
subpassDescription.pPreserveAttachments = nullptr; // (Preserve attachments not used by this example)
subpassDescription.pResolveAttachments = nullptr; // Resolve attachments are resolved at the end of a sub pass and can be used for e.g. multi sampling
// Setup subpass dependencies
// These will add the implicit attachment layout transitions specified by the attachment descriptions
// The actual usage layout is preserved through the layout specified in the attachment reference
// Each subpass dependency will introduce a memory and execution dependency between the source and dest subpass described by
// srcStageMask, dstStageMask, srcAccessMask, dstAccessMask (and dependencyFlags is set)
// Note: VK_SUBPASS_EXTERNAL is a special constant that refers to all commands executed outside of the actual renderpass)
std::array<VkSubpassDependency, 2> dependencies;
// Does the transition from final to initial layout for the depth an color attachments
// Depth attachment
dependencies[0].srcSubpass = VK_SUBPASS_EXTERNAL;
dependencies[0].dstSubpass = 0;
dependencies[0].srcStageMask = VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT;
dependencies[0].dstStageMask = VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT;
dependencies[0].srcAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
dependencies[0].dstAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT;
dependencies[0].dependencyFlags = 0;
// Color attachment
dependencies[1].srcSubpass = VK_SUBPASS_EXTERNAL;
dependencies[1].dstSubpass = 0;
dependencies[1].srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
dependencies[1].dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
dependencies[1].srcAccessMask = 0;
dependencies[1].dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | VK_ACCESS_COLOR_ATTACHMENT_READ_BIT;
dependencies[1].dependencyFlags = 0;
// Create the actual renderpass
VkRenderPassCreateInfo renderPassCI{};
renderPassCI.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
renderPassCI.attachmentCount = static_cast<uint32_t>(attachments.size()); // Number of attachments used by this render pass
renderPassCI.pAttachments = attachments.data(); // Descriptions of the attachments used by the render pass
renderPassCI.subpassCount = 1; // We only use one subpass in this example
renderPassCI.pSubpasses = &subpassDescription; // Description of that subpass
renderPassCI.dependencyCount = static_cast<uint32_t>(dependencies.size()); // Number of subpass dependencies
renderPassCI.pDependencies = dependencies.data(); // Subpass dependencies used by the render pass
VK_CHECK_RESULT(vkCreateRenderPass(device, &renderPassCI, nullptr, &renderPass));
}
// Vulkan loads its shaders from an immediate binary representation called SPIR-V
// Shaders are compiled offline from e.g. GLSL using the reference glslang compiler
// This function loads such a shader from a binary file and returns a shader module structure
VkShaderModule loadSPIRVShader(std::string filename)
{
size_t shaderSize;
char* shaderCode{ nullptr };
#if defined(__ANDROID__)
// Load shader from compressed asset
AAsset* asset = AAssetManager_open(androidApp->activity->assetManager, filename.c_str(), AASSET_MODE_STREAMING);
assert(asset);
shaderSize = AAsset_getLength(asset);
assert(shaderSize > 0);
shaderCode = new char[shaderSize];
AAsset_read(asset, shaderCode, shaderSize);
AAsset_close(asset);
#else
std::ifstream is(filename, std::ios::binary | std::ios::in | std::ios::ate);
if (is.is_open())
{
shaderSize = is.tellg();
is.seekg(0, std::ios::beg);
// Copy file contents into a buffer
shaderCode = new char[shaderSize];
is.read(shaderCode, shaderSize);
is.close();
assert(shaderSize > 0);
}
#endif
if (shaderCode)
{
// Create a new shader module that will be used for pipeline creation
VkShaderModuleCreateInfo shaderModuleCI{};
shaderModuleCI.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
shaderModuleCI.codeSize = shaderSize;
shaderModuleCI.pCode = (uint32_t*)shaderCode;
VkShaderModule shaderModule;
VK_CHECK_RESULT(vkCreateShaderModule(device, &shaderModuleCI, nullptr, &shaderModule));
delete[] shaderCode;
return shaderModule;
}
else
{
std::cerr << "Error: Could not open shader file \"" << filename << "\"" << std::endl;
return VK_NULL_HANDLE;
}
}
void createPipelines()
{
// Create the graphics pipeline used in this example
// Vulkan uses the concept of rendering pipelines to encapsulate fixed states, replacing OpenGL's complex state machine
// A pipeline is then stored and hashed on the GPU making pipeline changes very fast
// Note: There are still a few dynamic states that are not directly part of the pipeline (but the info that they are used is)
VkGraphicsPipelineCreateInfo pipelineCI{};
pipelineCI.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
// The layout used for this pipeline (can be shared among multiple pipelines using the same layout)
pipelineCI.layout = pipelineLayout;
// Renderpass this pipeline is attached to
pipelineCI.renderPass = renderPass;
// Construct the different states making up the pipeline
// Input assembly state describes how primitives are assembled
// This pipeline will assemble vertex data as a triangle lists (though we only use one triangle)
VkPipelineInputAssemblyStateCreateInfo inputAssemblyStateCI{};
inputAssemblyStateCI.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
inputAssemblyStateCI.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
// Rasterization state
VkPipelineRasterizationStateCreateInfo rasterizationStateCI{};
rasterizationStateCI.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
rasterizationStateCI.polygonMode = VK_POLYGON_MODE_FILL;
rasterizationStateCI.cullMode = VK_CULL_MODE_NONE;
rasterizationStateCI.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE;
rasterizationStateCI.depthClampEnable = VK_FALSE;
rasterizationStateCI.rasterizerDiscardEnable = VK_FALSE;
rasterizationStateCI.depthBiasEnable = VK_FALSE;
rasterizationStateCI.lineWidth = 1.0f;
// Color blend state describes how blend factors are calculated (if used)
// We need one blend attachment state per color attachment (even if blending is not used)
VkPipelineColorBlendAttachmentState blendAttachmentState{};
blendAttachmentState.colorWriteMask = 0xf;
blendAttachmentState.blendEnable = VK_FALSE;
VkPipelineColorBlendStateCreateInfo colorBlendStateCI{};
colorBlendStateCI.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
colorBlendStateCI.attachmentCount = 1;
colorBlendStateCI.pAttachments = &blendAttachmentState;
// Viewport state sets the number of viewports and scissor used in this pipeline
// Note: This is actually overridden by the dynamic states (see below)
VkPipelineViewportStateCreateInfo viewportStateCI{};
viewportStateCI.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
viewportStateCI.viewportCount = 1;
viewportStateCI.scissorCount = 1;
// Enable dynamic states
// Most states are baked into the pipeline, but there are still a few dynamic states that can be changed within a command buffer
// To be able to change these we need do specify which dynamic states will be changed using this pipeline. Their actual states are set later on in the command buffer.
// For this example we will set the viewport and scissor using dynamic states
std::vector<VkDynamicState> dynamicStateEnables;
dynamicStateEnables.push_back(VK_DYNAMIC_STATE_VIEWPORT);
dynamicStateEnables.push_back(VK_DYNAMIC_STATE_SCISSOR);
VkPipelineDynamicStateCreateInfo dynamicStateCI{};
dynamicStateCI.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO;
dynamicStateCI.pDynamicStates = dynamicStateEnables.data();
dynamicStateCI.dynamicStateCount = static_cast<uint32_t>(dynamicStateEnables.size());
// Depth and stencil state containing depth and stencil compare and test operations
// We only use depth tests and want depth tests and writes to be enabled and compare with less or equal
VkPipelineDepthStencilStateCreateInfo depthStencilStateCI{};
depthStencilStateCI.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO;
depthStencilStateCI.depthTestEnable = VK_TRUE;
depthStencilStateCI.depthWriteEnable = VK_TRUE;
depthStencilStateCI.depthCompareOp = VK_COMPARE_OP_LESS_OR_EQUAL;
depthStencilStateCI.depthBoundsTestEnable = VK_FALSE;
depthStencilStateCI.back.failOp = VK_STENCIL_OP_KEEP;
depthStencilStateCI.back.passOp = VK_STENCIL_OP_KEEP;
depthStencilStateCI.back.compareOp = VK_COMPARE_OP_ALWAYS;
depthStencilStateCI.stencilTestEnable = VK_FALSE;
depthStencilStateCI.front = depthStencilStateCI.back;
// Multi sampling state
// This example does not make use of multi sampling (for anti-aliasing), the state must still be set and passed to the pipeline
VkPipelineMultisampleStateCreateInfo multisampleStateCI{};
multisampleStateCI.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
multisampleStateCI.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT;
multisampleStateCI.pSampleMask = nullptr;
// Vertex input descriptions
// Specifies the vertex input parameters for a pipeline
// Vertex input binding
// This example uses a single vertex input binding at binding point 0 (see vkCmdBindVertexBuffers)
VkVertexInputBindingDescription vertexInputBinding{};
vertexInputBinding.binding = 0;
vertexInputBinding.stride = sizeof(Vertex);
vertexInputBinding.inputRate = VK_VERTEX_INPUT_RATE_VERTEX;
// Input attribute bindings describe shader attribute locations and memory layouts
std::array<VkVertexInputAttributeDescription, 2> vertexInputAttributs;
// These match the following shader layout (see triangle.vert):
// layout (location = 0) in vec3 inPos;
// layout (location = 1) in vec3 inColor;
// Attribute location 0: Position
vertexInputAttributs[0].binding = 0;
vertexInputAttributs[0].location = 0;
// Position attribute is three 32 bit signed (SFLOAT) floats (R32 G32 B32)
vertexInputAttributs[0].format = VK_FORMAT_R32G32B32_SFLOAT;
vertexInputAttributs[0].offset = offsetof(Vertex, position);
// Attribute location 1: Color
vertexInputAttributs[1].binding = 0;
vertexInputAttributs[1].location = 1;
// Color attribute is three 32 bit signed (SFLOAT) floats (R32 G32 B32)
vertexInputAttributs[1].format = VK_FORMAT_R32G32B32_SFLOAT;
vertexInputAttributs[1].offset = offsetof(Vertex, color);
// Vertex input state used for pipeline creation
VkPipelineVertexInputStateCreateInfo vertexInputStateCI{};
vertexInputStateCI.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
vertexInputStateCI.vertexBindingDescriptionCount = 1;
vertexInputStateCI.pVertexBindingDescriptions = &vertexInputBinding;
vertexInputStateCI.vertexAttributeDescriptionCount = 2;
vertexInputStateCI.pVertexAttributeDescriptions = vertexInputAttributs.data();
// Shaders
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages{};
// Vertex shader
shaderStages[0].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
// Set pipeline stage for this shader
shaderStages[0].stage = VK_SHADER_STAGE_VERTEX_BIT;
// Load binary SPIR-V shader
shaderStages[0].module = loadSPIRVShader(getShadersPath() + "triangle/triangle.vert.spv");
// Main entry point for the shader
shaderStages[0].pName = "main";
assert(shaderStages[0].module != VK_NULL_HANDLE);
// Fragment shader
shaderStages[1].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
// Set pipeline stage for this shader
shaderStages[1].stage = VK_SHADER_STAGE_FRAGMENT_BIT;
// Load binary SPIR-V shader
shaderStages[1].module = loadSPIRVShader(getShadersPath() + "triangle/triangle.frag.spv");
// Main entry point for the shader
shaderStages[1].pName = "main";
assert(shaderStages[1].module != VK_NULL_HANDLE);
// Set pipeline shader stage info
pipelineCI.stageCount = static_cast<uint32_t>(shaderStages.size());
pipelineCI.pStages = shaderStages.data();
// Assign the pipeline states to the pipeline creation info structure
pipelineCI.pVertexInputState = &vertexInputStateCI;
pipelineCI.pInputAssemblyState = &inputAssemblyStateCI;
pipelineCI.pRasterizationState = &rasterizationStateCI;
pipelineCI.pColorBlendState = &colorBlendStateCI;
pipelineCI.pMultisampleState = &multisampleStateCI;
pipelineCI.pViewportState = &viewportStateCI;
pipelineCI.pDepthStencilState = &depthStencilStateCI;
pipelineCI.pDynamicState = &dynamicStateCI;
// Create rendering pipeline using the specified states
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipeline));
// Shader modules are no longer needed once the graphics pipeline has been created
vkDestroyShaderModule(device, shaderStages[0].module, nullptr);
vkDestroyShaderModule(device, shaderStages[1].module, nullptr);
}
void createUniformBuffers()
{
// Prepare and initialize the per-frame uniform buffer blocks containing shader uniforms
// Single uniforms like in OpenGL are no longer present in Vulkan. All Shader uniforms are passed via uniform buffer blocks
VkMemoryRequirements memReqs;
// Vertex shader uniform buffer block
VkBufferCreateInfo bufferInfo{};
VkMemoryAllocateInfo allocInfo{};
allocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
allocInfo.pNext = nullptr;
allocInfo.allocationSize = 0;
allocInfo.memoryTypeIndex = 0;
bufferInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
bufferInfo.size = sizeof(ShaderData);
// This buffer will be used as a uniform buffer
bufferInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT;
// Create the buffers
for (uint32_t i = 0; i < MAX_CONCURRENT_FRAMES; i++) {
VK_CHECK_RESULT(vkCreateBuffer(device, &bufferInfo, nullptr, &uniformBuffers[i].buffer));
// Get memory requirements including size, alignment and memory type
vkGetBufferMemoryRequirements(device, uniformBuffers[i].buffer, &memReqs);
allocInfo.allocationSize = memReqs.size;
// Get the memory type index that supports host visible memory access
// Most implementations offer multiple memory types and selecting the correct one to allocate memory from is crucial
// We also want the buffer to be host coherent so we don't have to flush (or sync after every update.
// Note: This may affect performance so you might not want to do this in a real world application that updates buffers on a regular base
allocInfo.memoryTypeIndex = getMemoryTypeIndex(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
// Allocate memory for the uniform buffer
VK_CHECK_RESULT(vkAllocateMemory(device, &allocInfo, nullptr, &(uniformBuffers[i].memory)));
// Bind memory to buffer
VK_CHECK_RESULT(vkBindBufferMemory(device, uniformBuffers[i].buffer, uniformBuffers[i].memory, 0));
// We map the buffer once, so we can update it without having to map it again
VK_CHECK_RESULT(vkMapMemory(device, uniformBuffers[i].memory, 0, sizeof(ShaderData), 0, (void**)&uniformBuffers[i].mapped));
}
}
void prepare()
{
VulkanExampleBase::prepare();
createSynchronizationPrimitives();
createCommandBuffers();
createVertexBuffer();
createUniformBuffers();
createDescriptorSetLayout();
createDescriptorPool();
createDescriptorSets();
createPipelines();
prepared = true;
}
virtual void render()
{
if (!prepared)
return;
// Use a fence to wait until the command buffer has finished execution before using it again
vkWaitForFences(device, 1, &waitFences[currentFrame], VK_TRUE, UINT64_MAX);
VK_CHECK_RESULT(vkResetFences(device, 1, &waitFences[currentFrame]));
// Get the next swap chain image from the implementation
// Note that the implementation is free to return the images in any order, so we must use the acquire function and can't just cycle through the images/imageIndex on our own
uint32_t imageIndex;
VkResult result = vkAcquireNextImageKHR(device, swapChain.swapChain, UINT64_MAX, presentCompleteSemaphores[currentFrame], VK_NULL_HANDLE, &imageIndex);
if (result == VK_ERROR_OUT_OF_DATE_KHR) {
windowResize();
return;
}
else if ((result != VK_SUCCESS) && (result != VK_SUBOPTIMAL_KHR)) {
throw "Could not acquire the next swap chain image!";
}
// Update the uniform buffer for the next frame
ShaderData shaderData{};
shaderData.projectionMatrix = camera.matrices.perspective;
shaderData.viewMatrix = camera.matrices.view;
shaderData.modelMatrix = glm::mat4(1.0f);
// Copy the current matrices to the current frame's uniform buffer
// Note: Since we requested a host coherent memory type for the uniform buffer, the write is instantly visible to the GPU
memcpy(uniformBuffers[currentFrame].mapped, &shaderData, sizeof(ShaderData));
// Build the command buffer
// Unlike in OpenGL all rendering commands are recorded into command buffers that are then submitted to the queue
// This allows to generate work upfront in a separate thread
// For basic command buffers (like in this sample), recording is so fast that there is no need to offload this
vkResetCommandBuffer(commandBuffers[currentFrame], 0);
VkCommandBufferBeginInfo cmdBufInfo{};
cmdBufInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
// Set clear values for all framebuffer attachments with loadOp set to clear
// We use two attachments (color and depth) that are cleared at the start of the subpass and as such we need to set clear values for both
VkClearValue clearValues[2];
clearValues[0].color = { { 0.0f, 0.0f, 0.2f, 1.0f } };
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo{};
renderPassBeginInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
renderPassBeginInfo.pNext = nullptr;
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
renderPassBeginInfo.framebuffer = frameBuffers[imageIndex];
const VkCommandBuffer commandBuffer = commandBuffers[currentFrame];
VK_CHECK_RESULT(vkBeginCommandBuffer(commandBuffer, &cmdBufInfo));
// Start the first sub pass specified in our default render pass setup by the base class
// This will clear the color and depth attachment
vkCmdBeginRenderPass(commandBuffer, &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
// Update dynamic viewport state
VkViewport viewport{};
viewport.height = (float)height;
viewport.width = (float)width;
viewport.minDepth = (float)0.0f;
viewport.maxDepth = (float)1.0f;
vkCmdSetViewport(commandBuffer, 0, 1, &viewport);
// Update dynamic scissor state
VkRect2D scissor{};
scissor.extent.width = width;
scissor.extent.height = height;
scissor.offset.x = 0;
scissor.offset.y = 0;
vkCmdSetScissor(commandBuffer, 0, 1, &scissor);
// Bind descriptor set for the currrent frame's uniform buffer, so the shader uses the data from that buffer for this draw
vkCmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &uniformBuffers[currentFrame].descriptorSet, 0, nullptr);
// Bind the rendering pipeline
// The pipeline (state object) contains all states of the rendering pipeline, binding it will set all the states specified at pipeline creation time
vkCmdBindPipeline(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
// Bind triangle vertex buffer (contains position and colors)
VkDeviceSize offsets[1]{ 0 };
vkCmdBindVertexBuffers(commandBuffer, 0, 1, &vertices.buffer, offsets);
// Bind triangle index buffer
vkCmdBindIndexBuffer(commandBuffer, indices.buffer, 0, VK_INDEX_TYPE_UINT32);
// Draw indexed triangle
vkCmdDrawIndexed(commandBuffer, indices.count, 1, 0, 0, 1);
vkCmdEndRenderPass(commandBuffer);
// Ending the render pass will add an implicit barrier transitioning the frame buffer color attachment to
// VK_IMAGE_LAYOUT_PRESENT_SRC_KHR for presenting it to the windowing system
VK_CHECK_RESULT(vkEndCommandBuffer(commandBuffer));
// Submit the command buffer to the graphics queue