forked from SaschaWillems/Vulkan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
raytracingshadows.cpp
584 lines (499 loc) · 26.2 KB
/
raytracingshadows.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
/*
* Vulkan Example - Hardware accelerated ray tracing shadow example
*
* Renders a complex scene using multiple hit and miss shaders for implementing shadows
*
* Copyright (C) by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include "VulkanRaytracingSample.h"
#include "VulkanglTFModel.h"
class VulkanExample : public VulkanRaytracingSample
{
public:
AccelerationStructure bottomLevelAS;
AccelerationStructure topLevelAS;
std::vector<VkRayTracingShaderGroupCreateInfoKHR> shaderGroups{};
struct ShaderBindingTables {
ShaderBindingTable raygen;
ShaderBindingTable miss;
ShaderBindingTable hit;
} shaderBindingTables;
struct UniformData {
glm::mat4 viewInverse;
glm::mat4 projInverse;
glm::vec4 lightPos;
int32_t vertexSize;
} uniformData;
vks::Buffer ubo;
VkPipeline pipeline;
VkPipelineLayout pipelineLayout;
VkDescriptorSet descriptorSet;
VkDescriptorSetLayout descriptorSetLayout;
vkglTF::Model scene;
// This sample is derived from an extended base class that saves most of the ray tracing setup boiler plate
VulkanExample() : VulkanRaytracingSample()
{
title = "Ray traced shadows";
timerSpeed *= 0.25f;
camera.type = Camera::CameraType::lookat;
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 512.0f);
camera.setRotation(glm::vec3(0.0f, 0.0f, 0.0f));
camera.setTranslation(glm::vec3(0.0f, 3.0f, -10.0f));
enableExtensions();
}
~VulkanExample()
{
vkDestroyPipeline(device, pipeline, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
deleteStorageImage();
deleteAccelerationStructure(bottomLevelAS);
deleteAccelerationStructure(topLevelAS);
shaderBindingTables.raygen.destroy();
shaderBindingTables.miss.destroy();
shaderBindingTables.hit.destroy();
ubo.destroy();
}
/*
Create the bottom level acceleration structure contains the scene's actual geometry (vertices, triangles)
*/
void createBottomLevelAccelerationStructure()
{
// Instead of a simple triangle, we'll be loading a more complex scene for this example
// The shaders are accessing the vertex and index buffers of the scene, so the proper usage flag has to be set on the vertex and index buffers for the scene
vkglTF::memoryPropertyFlags = VK_BUFFER_USAGE_ACCELERATION_STRUCTURE_BUILD_INPUT_READ_ONLY_BIT_KHR | VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT | VK_BUFFER_USAGE_STORAGE_BUFFER_BIT;
const uint32_t glTFLoadingFlags = vkglTF::FileLoadingFlags::PreTransformVertices | vkglTF::FileLoadingFlags::PreMultiplyVertexColors | vkglTF::FileLoadingFlags::FlipY;
scene.loadFromFile(getAssetPath() + "models/vulkanscene_shadow.gltf", vulkanDevice, queue, glTFLoadingFlags);
VkDeviceOrHostAddressConstKHR vertexBufferDeviceAddress{};
VkDeviceOrHostAddressConstKHR indexBufferDeviceAddress{};
vertexBufferDeviceAddress.deviceAddress = getBufferDeviceAddress(scene.vertices.buffer);
indexBufferDeviceAddress.deviceAddress = getBufferDeviceAddress(scene.indices.buffer);
uint32_t numTriangles = static_cast<uint32_t>(scene.indices.count) / 3;
// Build
VkAccelerationStructureGeometryKHR accelerationStructureGeometry = vks::initializers::accelerationStructureGeometryKHR();
accelerationStructureGeometry.flags = VK_GEOMETRY_OPAQUE_BIT_KHR;
accelerationStructureGeometry.geometryType = VK_GEOMETRY_TYPE_TRIANGLES_KHR;
accelerationStructureGeometry.geometry.triangles.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_TRIANGLES_DATA_KHR;
accelerationStructureGeometry.geometry.triangles.vertexFormat = VK_FORMAT_R32G32B32_SFLOAT;
accelerationStructureGeometry.geometry.triangles.vertexData = vertexBufferDeviceAddress;
accelerationStructureGeometry.geometry.triangles.maxVertex = scene.vertices.count - 1;
accelerationStructureGeometry.geometry.triangles.vertexStride = sizeof(vkglTF::Vertex);
accelerationStructureGeometry.geometry.triangles.indexType = VK_INDEX_TYPE_UINT32;
accelerationStructureGeometry.geometry.triangles.indexData = indexBufferDeviceAddress;
accelerationStructureGeometry.geometry.triangles.transformData.deviceAddress = 0;
accelerationStructureGeometry.geometry.triangles.transformData.hostAddress = nullptr;
// Get size info
VkAccelerationStructureBuildGeometryInfoKHR accelerationStructureBuildGeometryInfo = vks::initializers::accelerationStructureBuildGeometryInfoKHR();
accelerationStructureBuildGeometryInfo.type = VK_ACCELERATION_STRUCTURE_TYPE_BOTTOM_LEVEL_KHR;
accelerationStructureBuildGeometryInfo.flags = VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_TRACE_BIT_KHR;
accelerationStructureBuildGeometryInfo.geometryCount = 1;
accelerationStructureBuildGeometryInfo.pGeometries = &accelerationStructureGeometry;
VkAccelerationStructureBuildSizesInfoKHR accelerationStructureBuildSizesInfo = vks::initializers::accelerationStructureBuildSizesInfoKHR();
vkGetAccelerationStructureBuildSizesKHR(
device,
VK_ACCELERATION_STRUCTURE_BUILD_TYPE_DEVICE_KHR,
&accelerationStructureBuildGeometryInfo,
&numTriangles,
&accelerationStructureBuildSizesInfo);
createAccelerationStructure(bottomLevelAS, VK_ACCELERATION_STRUCTURE_TYPE_BOTTOM_LEVEL_KHR, accelerationStructureBuildSizesInfo);
// Create a small scratch buffer used during build of the bottom level acceleration structure
ScratchBuffer scratchBuffer = createScratchBuffer(accelerationStructureBuildSizesInfo.buildScratchSize);
VkAccelerationStructureBuildGeometryInfoKHR accelerationBuildGeometryInfo = vks::initializers::accelerationStructureBuildGeometryInfoKHR();
accelerationBuildGeometryInfo.type = VK_ACCELERATION_STRUCTURE_TYPE_BOTTOM_LEVEL_KHR;
accelerationBuildGeometryInfo.flags = VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_TRACE_BIT_KHR;
accelerationBuildGeometryInfo.mode = VK_BUILD_ACCELERATION_STRUCTURE_MODE_BUILD_KHR;
accelerationBuildGeometryInfo.dstAccelerationStructure = bottomLevelAS.handle;
accelerationBuildGeometryInfo.geometryCount = 1;
accelerationBuildGeometryInfo.pGeometries = &accelerationStructureGeometry;
accelerationBuildGeometryInfo.scratchData.deviceAddress = scratchBuffer.deviceAddress;
VkAccelerationStructureBuildRangeInfoKHR accelerationStructureBuildRangeInfo{};
accelerationStructureBuildRangeInfo.primitiveCount = numTriangles;
accelerationStructureBuildRangeInfo.primitiveOffset = 0;
accelerationStructureBuildRangeInfo.firstVertex = 0;
accelerationStructureBuildRangeInfo.transformOffset = 0;
std::vector<VkAccelerationStructureBuildRangeInfoKHR*> accelerationBuildStructureRangeInfos = { &accelerationStructureBuildRangeInfo };
// Build the acceleration structure on the device via a one-time command buffer submission
// Some implementations may support acceleration structure building on the host (VkPhysicalDeviceAccelerationStructureFeaturesKHR->accelerationStructureHostCommands), but we prefer device builds
VkCommandBuffer commandBuffer = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
vkCmdBuildAccelerationStructuresKHR(
commandBuffer,
1,
&accelerationBuildGeometryInfo,
accelerationBuildStructureRangeInfos.data());
vulkanDevice->flushCommandBuffer(commandBuffer, queue);
deleteScratchBuffer(scratchBuffer);
}
/*
The top level acceleration structure contains the scene's object instances
*/
void createTopLevelAccelerationStructure()
{
VkTransformMatrixKHR transformMatrix = {
1.0f, 0.0f, 0.0f, 0.0f,
0.0f, 1.0f, 0.0f, 0.0f,
0.0f, 0.0f, 1.0f, 0.0f };
VkAccelerationStructureInstanceKHR instance{};
instance.transform = transformMatrix;
instance.instanceCustomIndex = 0;
instance.mask = 0xFF;
instance.instanceShaderBindingTableRecordOffset = 0;
instance.flags = VK_GEOMETRY_INSTANCE_TRIANGLE_FACING_CULL_DISABLE_BIT_KHR;
instance.accelerationStructureReference = bottomLevelAS.deviceAddress;
// Buffer for instance data
vks::Buffer instancesBuffer;
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT | VK_BUFFER_USAGE_ACCELERATION_STRUCTURE_BUILD_INPUT_READ_ONLY_BIT_KHR,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&instancesBuffer,
sizeof(VkAccelerationStructureInstanceKHR),
&instance));
VkDeviceOrHostAddressConstKHR instanceDataDeviceAddress{};
instanceDataDeviceAddress.deviceAddress = getBufferDeviceAddress(instancesBuffer.buffer);
VkAccelerationStructureGeometryKHR accelerationStructureGeometry = vks::initializers::accelerationStructureGeometryKHR();
accelerationStructureGeometry.geometryType = VK_GEOMETRY_TYPE_INSTANCES_KHR;
accelerationStructureGeometry.flags = VK_GEOMETRY_OPAQUE_BIT_KHR;
accelerationStructureGeometry.geometry.instances.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_INSTANCES_DATA_KHR;
accelerationStructureGeometry.geometry.instances.arrayOfPointers = VK_FALSE;
accelerationStructureGeometry.geometry.instances.data = instanceDataDeviceAddress;
// Get size info
VkAccelerationStructureBuildGeometryInfoKHR accelerationStructureBuildGeometryInfo = vks::initializers::accelerationStructureBuildGeometryInfoKHR();
accelerationStructureBuildGeometryInfo.type = VK_ACCELERATION_STRUCTURE_TYPE_TOP_LEVEL_KHR;
accelerationStructureBuildGeometryInfo.flags = VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_TRACE_BIT_KHR;
accelerationStructureBuildGeometryInfo.geometryCount = 1;
accelerationStructureBuildGeometryInfo.pGeometries = &accelerationStructureGeometry;
uint32_t primitive_count = 1;
VkAccelerationStructureBuildSizesInfoKHR accelerationStructureBuildSizesInfo = vks::initializers::accelerationStructureBuildSizesInfoKHR();
vkGetAccelerationStructureBuildSizesKHR(
device,
VK_ACCELERATION_STRUCTURE_BUILD_TYPE_DEVICE_KHR,
&accelerationStructureBuildGeometryInfo,
&primitive_count,
&accelerationStructureBuildSizesInfo);
createAccelerationStructure(topLevelAS, VK_ACCELERATION_STRUCTURE_TYPE_TOP_LEVEL_KHR, accelerationStructureBuildSizesInfo);
// Create a small scratch buffer used during build of the top level acceleration structure
ScratchBuffer scratchBuffer = createScratchBuffer(accelerationStructureBuildSizesInfo.buildScratchSize);
VkAccelerationStructureBuildGeometryInfoKHR accelerationBuildGeometryInfo = vks::initializers::accelerationStructureBuildGeometryInfoKHR();
accelerationBuildGeometryInfo.type = VK_ACCELERATION_STRUCTURE_TYPE_TOP_LEVEL_KHR;
accelerationBuildGeometryInfo.flags = VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_TRACE_BIT_KHR;
accelerationBuildGeometryInfo.mode = VK_BUILD_ACCELERATION_STRUCTURE_MODE_BUILD_KHR;
accelerationBuildGeometryInfo.dstAccelerationStructure = topLevelAS.handle;
accelerationBuildGeometryInfo.geometryCount = 1;
accelerationBuildGeometryInfo.pGeometries = &accelerationStructureGeometry;
accelerationBuildGeometryInfo.scratchData.deviceAddress = scratchBuffer.deviceAddress;
VkAccelerationStructureBuildRangeInfoKHR accelerationStructureBuildRangeInfo{};
accelerationStructureBuildRangeInfo.primitiveCount = 1;
accelerationStructureBuildRangeInfo.primitiveOffset = 0;
accelerationStructureBuildRangeInfo.firstVertex = 0;
accelerationStructureBuildRangeInfo.transformOffset = 0;
std::vector<VkAccelerationStructureBuildRangeInfoKHR*> accelerationBuildStructureRangeInfos = { &accelerationStructureBuildRangeInfo };
// Build the acceleration structure on the device via a one-time command buffer submission
// Some implementations may support acceleration structure building on the host (VkPhysicalDeviceAccelerationStructureFeaturesKHR->accelerationStructureHostCommands), but we prefer device builds
VkCommandBuffer commandBuffer = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
vkCmdBuildAccelerationStructuresKHR(
commandBuffer,
1,
&accelerationBuildGeometryInfo,
accelerationBuildStructureRangeInfos.data());
vulkanDevice->flushCommandBuffer(commandBuffer, queue);
deleteScratchBuffer(scratchBuffer);
instancesBuffer.destroy();
}
/*
Create the Shader Binding Tables that binds the programs and top-level acceleration structure
SBT Layout used in this sample:
/-----------\
| raygen |
|-----------|
| miss |
|-----------|
| hit |
\-----------/
*/
void createShaderBindingTables() {
const uint32_t handleSize = rayTracingPipelineProperties.shaderGroupHandleSize;
const uint32_t handleSizeAligned = vks::tools::alignedSize(rayTracingPipelineProperties.shaderGroupHandleSize, rayTracingPipelineProperties.shaderGroupHandleAlignment);
const uint32_t groupCount = static_cast<uint32_t>(shaderGroups.size());
const uint32_t sbtSize = groupCount * handleSizeAligned;
std::vector<uint8_t> shaderHandleStorage(sbtSize);
VK_CHECK_RESULT(vkGetRayTracingShaderGroupHandlesKHR(device, pipeline, 0, groupCount, sbtSize, shaderHandleStorage.data()));
createShaderBindingTable(shaderBindingTables.raygen, 1);
// We are using two miss shaders
createShaderBindingTable(shaderBindingTables.miss, 2);
createShaderBindingTable(shaderBindingTables.hit, 1);
// Copy handles
memcpy(shaderBindingTables.raygen.mapped, shaderHandleStorage.data(), handleSize);
// We are using two miss shaders, so we need to get two handles for the miss shader binding table
memcpy(shaderBindingTables.miss.mapped, shaderHandleStorage.data() + handleSizeAligned, handleSize * 2);
memcpy(shaderBindingTables.hit.mapped, shaderHandleStorage.data() + handleSizeAligned * 3, handleSize);
}
/*
Create the descriptor sets used for the ray tracing dispatch
*/
void createDescriptorSets()
{
std::vector<VkDescriptorPoolSize> poolSizes = {
{ VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, 1 },
{ VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 1 },
{ VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1 },
{ VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 2 }
};
VkDescriptorPoolCreateInfo descriptorPoolCreateInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, 1);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolCreateInfo, nullptr, &descriptorPool));
VkDescriptorSetAllocateInfo descriptorSetAllocateInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &descriptorSetAllocateInfo, &descriptorSet));
VkWriteDescriptorSetAccelerationStructureKHR descriptorAccelerationStructureInfo = vks::initializers::writeDescriptorSetAccelerationStructureKHR();
descriptorAccelerationStructureInfo.accelerationStructureCount = 1;
descriptorAccelerationStructureInfo.pAccelerationStructures = &topLevelAS.handle;
VkWriteDescriptorSet accelerationStructureWrite{};
accelerationStructureWrite.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
// The specialized acceleration structure descriptor has to be chained
accelerationStructureWrite.pNext = &descriptorAccelerationStructureInfo;
accelerationStructureWrite.dstSet = descriptorSet;
accelerationStructureWrite.dstBinding = 0;
accelerationStructureWrite.descriptorCount = 1;
accelerationStructureWrite.descriptorType = VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR;
VkDescriptorImageInfo storageImageDescriptor{ VK_NULL_HANDLE, storageImage.view, VK_IMAGE_LAYOUT_GENERAL };
VkDescriptorBufferInfo vertexBufferDescriptor{ scene.vertices.buffer, 0, VK_WHOLE_SIZE };
VkDescriptorBufferInfo indexBufferDescriptor{ scene.indices.buffer, 0, VK_WHOLE_SIZE };
std::vector<VkWriteDescriptorSet> writeDescriptorSets = {
// Binding 0: Top level acceleration structure
accelerationStructureWrite,
// Binding 1: Ray tracing result image
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 1, &storageImageDescriptor),
// Binding 2: Uniform data
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2, &ubo.descriptor),
// Binding 3: Scene vertex buffer
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 3, &vertexBufferDescriptor),
// Binding 4: Scene index buffer
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 4, &indexBufferDescriptor),
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, VK_NULL_HANDLE);
}
/*
Create our ray tracing pipeline
*/
void createRayTracingPipeline()
{
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
// Binding 0: Acceleration structure
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, VK_SHADER_STAGE_RAYGEN_BIT_KHR | VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR, 0),
// Binding 1: Storage image
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, VK_SHADER_STAGE_RAYGEN_BIT_KHR, 1),
// Binding 2: Uniform buffer
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_RAYGEN_BIT_KHR | VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR | VK_SHADER_STAGE_MISS_BIT_KHR, 2),
// Binding 3: Vertex buffer
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR, 3),
// Binding 4: Index buffer
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR, 4),
};
VkDescriptorSetLayoutCreateInfo descriptorSetLayoutCI = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorSetLayoutCI, nullptr, &descriptorSetLayout));
VkPipelineLayoutCreateInfo pPipelineLayoutCI = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayout, 1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCI, nullptr, &pipelineLayout));
/*
Setup ray tracing shader groups
*/
std::vector<VkPipelineShaderStageCreateInfo> shaderStages;
// Ray generation group
{
shaderStages.push_back(loadShader(getShadersPath() + "raytracingshadows/raygen.rgen.spv", VK_SHADER_STAGE_RAYGEN_BIT_KHR));
VkRayTracingShaderGroupCreateInfoKHR shaderGroup{};
shaderGroup.sType = VK_STRUCTURE_TYPE_RAY_TRACING_SHADER_GROUP_CREATE_INFO_KHR;
shaderGroup.type = VK_RAY_TRACING_SHADER_GROUP_TYPE_GENERAL_KHR;
shaderGroup.generalShader = static_cast<uint32_t>(shaderStages.size()) - 1;
shaderGroup.closestHitShader = VK_SHADER_UNUSED_KHR;
shaderGroup.anyHitShader = VK_SHADER_UNUSED_KHR;
shaderGroup.intersectionShader = VK_SHADER_UNUSED_KHR;
shaderGroups.push_back(shaderGroup);
}
// Miss group
{
shaderStages.push_back(loadShader(getShadersPath() + "raytracingshadows/miss.rmiss.spv", VK_SHADER_STAGE_MISS_BIT_KHR));
VkRayTracingShaderGroupCreateInfoKHR shaderGroup{};
shaderGroup.sType = VK_STRUCTURE_TYPE_RAY_TRACING_SHADER_GROUP_CREATE_INFO_KHR;
shaderGroup.type = VK_RAY_TRACING_SHADER_GROUP_TYPE_GENERAL_KHR;
shaderGroup.generalShader = static_cast<uint32_t>(shaderStages.size()) - 1;
shaderGroup.closestHitShader = VK_SHADER_UNUSED_KHR;
shaderGroup.anyHitShader = VK_SHADER_UNUSED_KHR;
shaderGroup.intersectionShader = VK_SHADER_UNUSED_KHR;
shaderGroups.push_back(shaderGroup);
// Second shader for shadows
shaderStages.push_back(loadShader(getShadersPath() + "raytracingshadows/shadow.rmiss.spv", VK_SHADER_STAGE_MISS_BIT_KHR));
shaderGroup.generalShader = static_cast<uint32_t>(shaderStages.size()) - 1;
shaderGroups.push_back(shaderGroup);
}
// Closest hit group
{
shaderStages.push_back(loadShader(getShadersPath() + "raytracingshadows/closesthit.rchit.spv", VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR));
VkRayTracingShaderGroupCreateInfoKHR shaderGroup{};
shaderGroup.sType = VK_STRUCTURE_TYPE_RAY_TRACING_SHADER_GROUP_CREATE_INFO_KHR;
shaderGroup.type = VK_RAY_TRACING_SHADER_GROUP_TYPE_TRIANGLES_HIT_GROUP_KHR;
shaderGroup.generalShader = VK_SHADER_UNUSED_KHR;
shaderGroup.closestHitShader = static_cast<uint32_t>(shaderStages.size()) - 1;
shaderGroup.anyHitShader = VK_SHADER_UNUSED_KHR;
shaderGroup.intersectionShader = VK_SHADER_UNUSED_KHR;
shaderGroups.push_back(shaderGroup);
}
VkRayTracingPipelineCreateInfoKHR rayTracingPipelineCI = vks::initializers::rayTracingPipelineCreateInfoKHR();
rayTracingPipelineCI.stageCount = static_cast<uint32_t>(shaderStages.size());
rayTracingPipelineCI.pStages = shaderStages.data();
rayTracingPipelineCI.groupCount = static_cast<uint32_t>(shaderGroups.size());
rayTracingPipelineCI.pGroups = shaderGroups.data();
rayTracingPipelineCI.maxPipelineRayRecursionDepth = 2;
rayTracingPipelineCI.layout = pipelineLayout;
VK_CHECK_RESULT(vkCreateRayTracingPipelinesKHR(device, VK_NULL_HANDLE, VK_NULL_HANDLE, 1, &rayTracingPipelineCI, nullptr, &pipeline));
}
/*
Create the uniform buffer used to pass matrices to the ray tracing ray generation shader
*/
void createUniformBuffer()
{
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&ubo,
sizeof(uniformData),
&uniformData));
VK_CHECK_RESULT(ubo.map());
updateUniformBuffers();
}
/*
If the window has been resized, we need to recreate the storage image and it's descriptor
*/
void handleResize()
{
// Recreate image
createStorageImage(swapChain.colorFormat, { width, height, 1 });
// Update descriptor
VkDescriptorImageInfo storageImageDescriptor{ VK_NULL_HANDLE, storageImage.view, VK_IMAGE_LAYOUT_GENERAL };
VkWriteDescriptorSet resultImageWrite = vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 1, &storageImageDescriptor);
vkUpdateDescriptorSets(device, 1, &resultImageWrite, 0, VK_NULL_HANDLE);
resized = false;
}
/*
Command buffer generation
*/
void buildCommandBuffers()
{
if (resized)
{
handleResize();
}
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VkImageSubresourceRange subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
/*
Dispatch the ray tracing commands
*/
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, pipeline);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, pipelineLayout, 0, 1, &descriptorSet, 0, 0);
VkStridedDeviceAddressRegionKHR emptySbtEntry = {};
vkCmdTraceRaysKHR(
drawCmdBuffers[i],
&shaderBindingTables.raygen.stridedDeviceAddressRegion,
&shaderBindingTables.miss.stridedDeviceAddressRegion,
&shaderBindingTables.hit.stridedDeviceAddressRegion,
&emptySbtEntry,
width,
height,
1);
/*
Copy ray tracing output to swap chain image
*/
// Prepare current swap chain image as transfer destination
vks::tools::setImageLayout(
drawCmdBuffers[i],
swapChain.images[i],
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
subresourceRange);
// Prepare ray tracing output image as transfer source
vks::tools::setImageLayout(
drawCmdBuffers[i],
storageImage.image,
VK_IMAGE_LAYOUT_GENERAL,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
subresourceRange);
VkImageCopy copyRegion{};
copyRegion.srcSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 };
copyRegion.srcOffset = { 0, 0, 0 };
copyRegion.dstSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 };
copyRegion.dstOffset = { 0, 0, 0 };
copyRegion.extent = { width, height, 1 };
vkCmdCopyImage(drawCmdBuffers[i], storageImage.image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, swapChain.images[i], VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, ©Region);
// Transition swap chain image back for presentation
vks::tools::setImageLayout(
drawCmdBuffers[i],
swapChain.images[i],
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
VK_IMAGE_LAYOUT_PRESENT_SRC_KHR,
subresourceRange);
// Transition ray tracing output image back to general layout
vks::tools::setImageLayout(
drawCmdBuffers[i],
storageImage.image,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
VK_IMAGE_LAYOUT_GENERAL,
subresourceRange);
drawUI(drawCmdBuffers[i], frameBuffers[i]);
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
void updateUniformBuffers()
{
uniformData.projInverse = glm::inverse(camera.matrices.perspective);
uniformData.viewInverse = glm::inverse(camera.matrices.view);
uniformData.lightPos = glm::vec4(cos(glm::radians(timer * 360.0f)) * 40.0f, -50.0f + sin(glm::radians(timer * 360.0f)) * 20.0f, 25.0f + sin(glm::radians(timer * 360.0f)) * 5.0f, 0.0f);
// Pass the vertex size to the shader for unpacking vertices
uniformData.vertexSize = sizeof(vkglTF::Vertex);
memcpy(ubo.mapped, &uniformData, sizeof(uniformData));
}
void getEnabledFeatures()
{
// Enable features required for ray tracing using feature chaining via pNext
enabledBufferDeviceAddresFeatures.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES;
enabledBufferDeviceAddresFeatures.bufferDeviceAddress = VK_TRUE;
enabledRayTracingPipelineFeatures.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_TRACING_PIPELINE_FEATURES_KHR;
enabledRayTracingPipelineFeatures.rayTracingPipeline = VK_TRUE;
enabledRayTracingPipelineFeatures.pNext = &enabledBufferDeviceAddresFeatures;
enabledAccelerationStructureFeatures.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ACCELERATION_STRUCTURE_FEATURES_KHR;
enabledAccelerationStructureFeatures.accelerationStructure = VK_TRUE;
enabledAccelerationStructureFeatures.pNext = &enabledRayTracingPipelineFeatures;
deviceCreatepNextChain = &enabledAccelerationStructureFeatures;
}
void prepare()
{
VulkanRaytracingSample::prepare();
// Create the acceleration structures used to render the ray traced scene
createBottomLevelAccelerationStructure();
createTopLevelAccelerationStructure();
createStorageImage(swapChain.colorFormat, { width, height, 1 });
createUniformBuffer();
createRayTracingPipeline();
createShaderBindingTables();
createDescriptorSets();
buildCommandBuffers();
prepared = true;
}
void draw()
{
VulkanExampleBase::prepareFrame();
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
}
virtual void render()
{
if (!prepared)
return;
draw();
if (!paused || camera.updated)
updateUniformBuffers();
}
};
VULKAN_EXAMPLE_MAIN()