forked from Joker316701882/Deep-Image-Matting
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
48 lines (38 loc) · 1.7 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import tensorflow as tf
import numpy as np
import os
from scipy import misc
from matting import generate_trimap
import argparse
import sys
g_mean = np.array(([126.88,120.24,112.19])).reshape([1,1,3])
def main(args):
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction = args.gpu_fraction)
with tf.Session(config=tf.ConfigProto(gpu_options = gpu_options)) as sess:
saver = tf.train.import_meta_graph('./meta_graph/my-model.meta')
saver.restore(sess,tf.train.latest_checkpoint('./model'))
image_batch = tf.get_collection('image_batch')[0]
GT_trimap = tf.get_collection('GT_trimap')[0]
pred_mattes = tf.get_collection('pred_mattes')[0]
rgb = misc.imread(args.rgb)
alpha = misc.imread(args.alpha,'L')
trimap = generate_trimap(np.expand_dims(np.copy(alpha),2),np.expand_dims(alpha,2))[:,:,0]
origin_shape = alpha.shape
rgb = np.expand_dims(misc.imresize(rgb.astype(np.uint8),[320,320,3]).astype(np.float32)-g_mean,0)
trimap = np.expand_dims(np.expand_dims(misc.imresize(trimap.astype(np.uint8),[320,320],interp = 'nearest').astype(np.float32),2),0)
feed_dict = {image_batch:rgb,GT_trimap:trimap}
pred_alpha = sess.run(pred_mattes,feed_dict = feed_dict)
final_alpha = misc.imresize(np.squeeze(pred_alpha),origin_shape)
# misc.imshow(final_alpha)
misc.imsave('./alpha.png',final_alpha)
def parse_arguments(argv):
parser = argparse.ArgumentParser()
parser.add_argument('--alpha', type=str,
help='input alpha')
parser.add_argument('--rgb', type=str,
help='input rgb')
parser.add_argument('--gpu_fraction', type=float,
help='how much gpu is needed, usually 4G is enough',default = 0.4)
return parser.parse_args(argv)
if __name__ == '__main__':
main(parse_arguments(sys.argv[1:]))