-
Notifications
You must be signed in to change notification settings - Fork 2
/
BldLossAssessment.py
320 lines (277 loc) · 15 KB
/
BldLossAssessment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
########################################################
# Perform building seismic loss assessment according to Hazus. Return the
# damage states, economic losses, repair time, loss of function, etc. given
# the EDP of buildings.
#
# Dependancy:
# - pandas, numpy
########################################################
from pathlib import Path
from operator import index
import numpy as np
import random
from numpy import log
import pandas as pd
import statistics as sta
class BldLossAssessment:
__DS_type = ['Slight', 'Moderate', 'Extensive', 'Complete']
# input parameters
NumOfStories = 0
FloorArea = 0 # m2
StructuralType = 'UNKNOWN' # Hazus table 5.1
SeismicDesignLevel = 'moderate-code' # 'high-code', 'moderate-code', 'low-code',
OccupancyClass = 'UNKNOWN'
## Estimated results
# damage states
DS_Struct = ['UNKNOWN'] # None/ Slight/ Moderate/ Extensive/ Complete
DS_NonStruct_DriftSen = ['UNKNOWN']
DS_NonStruct_AccelSen = ['UNKNOWN']
# repair cost
RepairCost_Total = ['UNKNOWN']
RepairCost_Struct = ['UNKNOWN']
RepairCost_NonStruct_DriftSen = ['UNKNOWN']
RepairCost_NonStruct_AccelSen = ['UNKNOWN']
# repair time
RepairTime = ['UNKNOWN']
RecoveryTime = ['UNKNOWN'] # longer than repair time. It considers other factors apart from repairing components
FunctionLossTime = ['UNKNOWN']
## parameters on resisual drift
Median_RIDR = 0.01 # irrepairable residual drift ratio. 0 means not to consider it
Beta_RIDR = 0.3
## Data from hazus
# IDR/Accel thresholds for structural/Nonstructural DS
Median_IDR_Struct_DS = [0,0,0,0]
Beta_IDR_Struct_DS = [0,0,0,0]
Median_IDR_NonStruct_DS = [0,0,0,0]
Beta_IDR_NonStruct_DS = [0,0,0,0]
Median_Accel_NonStruct_DS = [0,0,0,0] # Unit: g
Beta_Accel_NonStruct_DS = [0,0,0,0] # Unit: g
# replacement cost
ReplacementCost_Total = 0
StructureReplacementCost = 0 # including (1) structural, (2) drift-sens, and (3) accel-sens non-struct
ContentsValueFactorOfStructureValue = 1.0 # accel-sensitive non-structural components
# repair cost ratios
StructureRCRatio_DS = [0,0,0,0] # corresponding to 4 damage states
AccelSenNonstructRCRatio_DS = [0,0,0,0] # corresponding to 4 damage states
DriftSenNonstructRCRatio_DS = [0,0,0,0] # corresponding to 4 damage states
ContentsRCRatio_DS = [0,0,0,0] # corresponding to 4 accel-sensitive damage states
# repair time
RepairTime_DS = [0,0,0,0,0] # corresponding to 5 damage states
RecoveryTime_DS = [0,0,0,0,0] # corresponding to 5 damage states
FunctionLossMultipliers = [0,0,0,0,0] # corresponding to 5 damage states
def __init__(self, NumOfStories, FloorArea, StructuralType, DesignLevel, OccupancyClass):
self.NumOfStories = NumOfStories
self.FloorArea = FloorArea
self.__Read_StructuralType(StructuralType)
self.SeismicDesignLevel = DesignLevel
self.OccupancyClass = OccupancyClass
if self.OccupancyClass=='RES3':
ind = (np.abs(np.array([2200,4400,8000,15000,40000,80000])/3.28/3.28-self.FloorArea)).argmin()
self.OccupancyClass = self.OccupancyClass + ['A','B','C','D','E','F'][ind]
self.__Read_StructureReplacementCost()
self.__Read_ContentsValueFactor()
self.ReplacementCost_Total = self.StructureReplacementCost* \
(1.0+self.ContentsValueFactorOfStructureValue)
self.__Read_RepairCostRatios()
self.__Read_RepairTime_DS()
self.__Read_IDR_Accel_thresholds_DS()
def LossAssessment(self,MaxDriftRatio,MaxAbsAccel, MaxRIDR = 'none'):
# Parameters:
# MaxDriftRatio - max IDR. List[] . It is a vector if there are multiple analyses.
# MaxAbsAccel - max AbsAccel (g). list[].
# MaxRIDR - max residual drift ratio. list[].
if len(MaxDriftRatio)==0 or len(MaxAbsAccel)==0:
return
self.__Estimate_DamageState(MaxDriftRatio,MaxAbsAccel,MaxRIDR)
self.__Estimate_RepairCost()
self.__Estimate_RepairTime()
def __Read_StructuralType(self,StructuralType):
current_dir = Path(__file__).resolve().parent
HazusInventoryTable4_2 = pd.read_csv(current_dir/"Resources/HazusInventory Table 4-2.csv",
index_col=0, header=0)
rownames = HazusInventoryTable4_2.index.to_list()
rownames_NO_LMH = rownames.copy()
for i in range(0,len(rownames)):
if rownames[i][-1] in 'LMH':
rownames_NO_LMH[i] = rownames[i][:-1]
if StructuralType in rownames:
self.StructuralType = StructuralType
elif StructuralType in rownames_NO_LMH:
ind = [i for i in range(0,len(rownames_NO_LMH)) if StructuralType==rownames_NO_LMH[i]]
storyrange = HazusInventoryTable4_2.iloc[ind]['story range'].values.tolist()
for i in range(0,len(storyrange)):
if '~' in storyrange[i]:
Story_low = int(storyrange[i].split('~')[0])
Story_high = int(storyrange[i].split('~')[1])
elif storyrange[i]=='all':
Story_low = 1
Story_high = float('inf')
elif '+' in storyrange[i]:
Story_low = int(storyrange[i][:-1])
Story_high = float('inf')
else:
Story_low = int(storyrange[i])
Story_high = int(storyrange[i])
if self.NumOfStories>=Story_low and self.NumOfStories<=Story_high:
self.StructuralType = rownames[ind[i]]
break
else:
self.StructuralType = StructuralType + ' is UNKNOWN'
def __Read_StructureReplacementCost(self):
current_dir = Path(__file__).resolve().parent
HazusInventoryTable6_2 = pd.read_csv(
current_dir/"./Resources/HazusInventory Table 6-2.csv",
index_col=0, header=1)
if self.OccupancyClass=='RES1':
HazusInventoryTable6_3 = pd.read_csv(
current_dir/"./Resources/HazusInventory Table 6-3.csv",
index_col=[0,1], header=1)
N_story = self.NumOfStories if self.NumOfStories<=3 else 3
HeightClass = ['One-story','Two-story','Three-story'][N_story-1]
RCPersqft = HazusInventoryTable6_3.loc[('Average',HeightClass),'Average Base cost per sq.ft']
else:
RCPersqft = HazusInventoryTable6_2.loc[self.OccupancyClass,'Structure Replacement Costl/sq.ft (2018)']
assert RCPersqft[0]=='$'
RCPersqft = float(RCPersqft[1:])
self.StructureReplacementCost = RCPersqft*(self.FloorArea*3.28*3.28)
def __Read_ContentsValueFactor(self):
current_dir = Path(__file__).resolve().parent
HazusInventoryTable6_9 = pd.read_csv(current_dir/"./Resources/HazusInventory Table 6-9.csv",
index_col=0, header=1)
ContentsValueFactor = HazusInventoryTable6_9.loc[self.OccupancyClass,'Contents Value (%)']
assert ContentsValueFactor[-1:]=='%'
self.ContentsValueFactorOfStructureValue = float(ContentsValueFactor[:-1])/100.0
def __Read_RepairCostRatios(self):
current_dir = Path(__file__).resolve().parent
HazusTable15_2 = pd.read_csv(current_dir/"./Resources/HazusData Table 15.2.csv",
index_col=1, header=2)
HazusTable15_2 = HazusTable15_2.drop(['No.'], axis=1)
HazusTable15_3 = pd.read_csv(current_dir/"./Resources/HazusData Table 15.3.csv",
index_col=1, header=2)
HazusTable15_3 = HazusTable15_3.drop(['No.'], axis=1)
HazusTable15_4 = pd.read_csv(current_dir/"./Resources/HazusData Table 15.4.csv",
index_col=1, header=2)
HazusTable15_4 = HazusTable15_4.drop(['No.'], axis=1)
HazusTable15_5 = pd.read_csv(current_dir/"./Resources/HazusData Table 15.5.csv",
index_col=1, header=2)
HazusTable15_5 = HazusTable15_5.drop(['No.'], axis=1)
self.StructureRCRatio_DS = (HazusTable15_2.loc[self.OccupancyClass].values/100.0).tolist()
self.AccelSenNonstructRCRatio_DS = (HazusTable15_3.loc[self.OccupancyClass].values/100.0).tolist()
self.DriftSenNonstructRCRatio_DS = (HazusTable15_4.loc[self.OccupancyClass].values/100.0).tolist()
self.ContentsRCRatio_DS = (HazusTable15_5.loc[self.OccupancyClass].values/100.0).tolist()
def __Read_RepairTime_DS(self):
current_dir = Path(__file__).resolve().parent
HazusData4_2_Table11_7 = pd.read_csv(current_dir/"./Resources/HazusData4-2 Table 11-7.csv",
index_col=1, header=2)
HazusData4_2_Table11_7 = HazusData4_2_Table11_7.drop(['No.'], axis=1)
HazusData4_2_Table11_8 = pd.read_csv(current_dir/"./Resources/HazusData4-2 Table 11-8.csv",
index_col=1, header=2)
HazusData4_2_Table11_8 = HazusData4_2_Table11_8.drop(['No.'], axis=1)
HazusData4_2_Table11_9 = pd.read_csv(current_dir/"./Resources/HazusData4-2 Table 11-9.csv",
index_col=1, header=2)
HazusData4_2_Table11_9 = HazusData4_2_Table11_9.drop(['No.'], axis=1)
self.RepairTime_DS = HazusData4_2_Table11_7.loc[self.OccupancyClass].values.tolist()
self.RecoveryTime_DS = HazusData4_2_Table11_8.loc[self.OccupancyClass].values.tolist()
self.FunctionLossMultipliers = HazusData4_2_Table11_9.loc[self.OccupancyClass].values.tolist()
def __Read_IDR_Accel_thresholds_DS(self):
current_dir = Path(__file__).resolve().parent
HazusTable5_9 = pd.read_csv(current_dir/"./Resources/HazusData Table 5.9.csv",
index_col=0, header=[0,1,2,3])
HazusTable5_10 = pd.read_csv(current_dir/"./Resources/HazusData Table 5.10.csv",
index_col=None, header=[1,2])
HazusTable5_12 = pd.read_csv(current_dir/"./Resources/HazusData Table 5.12.csv",
index_col=0, header=[1,2])
self.Median_IDR_Struct_DS = HazusTable5_9.loc[self.StructuralType,(self.SeismicDesignLevel,
'Interstory Drift at Threshold of Damage State','Median')].values.tolist()
self.Beta_IDR_Struct_DS = HazusTable5_9.loc[self.StructuralType,(self.SeismicDesignLevel,
'Interstory Drift at Threshold of Damage State','Beta')].values.tolist()
self.Median_IDR_NonStruct_DS = HazusTable5_10.loc[0,('Median')].values.tolist()
self.Beta_IDR_NonStruct_DS = HazusTable5_10.loc[0,('Beta')].values.tolist()
self.Median_Accel_NonStruct_DS = HazusTable5_12.loc[self.SeismicDesignLevel,('Median')].values.tolist()
self.Beta_Accel_NonStruct_DS = HazusTable5_12.loc[self.SeismicDesignLevel,('Beta')].values.tolist()
def __Estimate_DamageState(self,MaxDriftRatio,MaxAbsAccel,MaxRIDR):
# normal distribution objects
nd_DS_Struct = []
for a, b in zip(self.Median_IDR_Struct_DS,self.Beta_IDR_Struct_DS):
nd_DS_Struct.append(sta.NormalDist(log(a),b))
nd_DS_NonStruct_Drift = []
for a, b in zip(self.Median_IDR_NonStruct_DS,self.Beta_IDR_NonStruct_DS):
nd_DS_NonStruct_Drift.append(sta.NormalDist(log(a),b))
nd_DS_NonStruct_Accel = []
for a, b in zip(self.Median_Accel_NonStruct_DS,self.Beta_Accel_NonStruct_DS):
nd_DS_NonStruct_Accel.append(sta.NormalDist(log(a),b))
if not ((self.Median_RIDR ==0) or (MaxRIDR=='none')):
nd_irrepairable = sta.NormalDist(log(self.Median_RIDR),self.Beta_RIDR)
self.DS_Struct = ['None'] * len(MaxDriftRatio)
self.DS_NonStruct_DriftSen = ['None']* len(MaxDriftRatio)
self.DS_NonStruct_AccelSen = ['None']* len(MaxDriftRatio)
i = 0
for d, a in zip(MaxDriftRatio, MaxAbsAccel):
# damage states
# irrepairable
if not ((self.Median_RIDR ==0) or (MaxRIDR=='none')):
assert isinstance(MaxRIDR,list)
assert len(MaxRIDR)==len(MaxDriftRatio)
P_irrepairable = nd_irrepairable.cdf(log(MaxRIDR[i]))
if random.random()<=P_irrepairable:
# irrepairable
self.DS_Struct[i] = self.__DS_type[-1]
self.DS_NonStruct_DriftSen[i] = self.__DS_type[-1]
self.DS_NonStruct_AccelSen[i] = self.__DS_type[-1]
i+=1
continue
# repairable
P_DS_Struct = [nd.cdf(log(d)) for nd in nd_DS_Struct]
P_DS_NonStruct_Drift = [nd.cdf(log(d)) for nd in nd_DS_NonStruct_Drift]
P_DS_NonStruct_Accel = [nd.cdf(log(a)) for nd in nd_DS_NonStruct_Accel]
ind = np.nonzero(np.array(P_DS_Struct)>=random.random())[0]
if ind.size>0:
self.DS_Struct[i] = self.__DS_type[ind[-1]]
ind = np.nonzero(np.array(P_DS_NonStruct_Drift)>=random.random())[0]
if ind.size>0:
self.DS_NonStruct_DriftSen[i] = self.__DS_type[ind[-1]]
ind = np.nonzero(np.array(P_DS_NonStruct_Accel)>=random.random())[0]
if ind.size>0:
self.DS_NonStruct_AccelSen[i] = self.__DS_type[ind[-1]]
i+=1
def __Estimate_RepairCost(self):
# given Damage States
self.RepairCost_Struct = [0]*len(self.DS_Struct)
self.RepairCost_NonStruct_DriftSen = [0]*len(self.DS_Struct)
self.RepairCost_NonStruct_AccelSen = [0]*len(self.DS_Struct)
self.RepairCost_Total = [0]*len(self.DS_Struct)
i=0
for ds1,ds2,ds3 in zip(self.DS_Struct,self.DS_NonStruct_DriftSen,self.DS_NonStruct_AccelSen):
if ds1 in self.__DS_type:
ind = self.__DS_type.index(ds1)
self.RepairCost_Struct[i] = self.StructureRCRatio_DS[ind]*self.StructureReplacementCost
else:
self.RepairCost_Struct[i] = 0
if ds2 in self.__DS_type:
ind = self.__DS_type.index(ds2)
self.RepairCost_NonStruct_DriftSen[i] = \
self.DriftSenNonstructRCRatio_DS[ind]*self.StructureReplacementCost
else:
self.RepairCost_NonStruct_DriftSen[i] = 0
if ds3 in self.__DS_type:
ind = self.__DS_type.index(ds3)
self.RepairCost_NonStruct_AccelSen[i] = \
self.AccelSenNonstructRCRatio_DS[ind]*self.StructureReplacementCost \
+ self.ContentsRCRatio_DS[ind]*self.StructureReplacementCost
else:
self.RepairCost_NonStruct_AccelSen[i] = 0
self.RepairCost_Total[i] = self.RepairCost_Struct[i] + \
self.RepairCost_NonStruct_DriftSen[i] + \
self.RepairCost_NonStruct_AccelSen[i]
i+=1
def __Estimate_RepairTime(self):
self.RepairTime = [0]*len(self.DS_Struct)
self.RecoveryTime = [0]*len(self.DS_Struct)
self.FunctionLossTime = [0]*len(self.DS_Struct)
i = 0
for ds in self.DS_Struct:
ind = self.__DS_type.index(ds) if ds in self.__DS_type else -1
self.RepairTime[i] = self.RepairTime_DS[ind+1]
self.RecoveryTime[i] = self.RecoveryTime_DS[ind+1]
self.FunctionLossTime[i] = self.RecoveryTime[i]*self.FunctionLossMultipliers[ind+1]
i+=1