-
Notifications
You must be signed in to change notification settings - Fork 3
/
train.py
344 lines (285 loc) · 17.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# This work is licensed under the Creative Commons Attribution-NonCommercial
# 4.0 International License. To view a copy of this license, visit
# http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to
# Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
import os
import time
import numpy as np
import tensorflow as tf
import config
import tfutil
import dataset
import misc
#----------------------------------------------------------------------------
# Choose the size and contents of the image snapshot grids that are exported
# periodically during training.
def setup_snapshot_image_grid(G, training_set,
size = '1080p', # '1080p' = to be viewed on 1080p display, '4k' = to be viewed on 4k display.
layout = 'random'): # 'random' = grid contents are selected randomly, 'row_per_class' = each row corresponds to one class label.
# Select size
gw = 1; gh = 1
if size == '1080p':
gw = np.clip(1920 // G.output_shape[3], 3, 32)
gh = np.clip(1080 // G.output_shape[2], 2, 32)
if size == '4k':
gw = np.clip(3840 // G.output_shape[3], 7, 32)
gh = np.clip(2160 // G.output_shape[2], 4, 32)
# Fill in reals and labels.
reals = np.zeros([gw * gh] + training_set.shape, dtype=training_set.dtype)
labels = np.zeros([gw * gh, training_set.label_size], dtype=training_set.label_dtype)
for idx in range(gw * gh):
x = idx % gw; y = idx // gw
while True:
real, label = training_set.get_minibatch_np(1)
if layout == 'row_per_class' and training_set.label_size > 0:
if label[0, y % training_set.label_size] == 0.0:
continue
reals[idx] = real[0]
labels[idx] = label[0]
break
# Generate latents.
latents = np.random.randn(gw * gh, 128).astype(np.float32)
return (gw, gh), reals, labels, latents
#----------------------------------------------------------------------------
# Just-in-time processing of training images before feeding them to the networks.
def process_reals(x, lod, mirror_augment, drange_data, drange_net):
with tf.name_scope('ProcessReals'):
with tf.name_scope('DynamicRange'):
x = tf.cast(x, tf.float32)
x = misc.adjust_dynamic_range(x, drange_data, drange_net)
if mirror_augment:
with tf.name_scope('MirrorAugment'):
s = tf.shape(x)
mask = tf.random_uniform([s[0], 1, 1, 1], 0.0, 1.0)
mask = tf.tile(mask, [1, s[1], s[2], s[3]])
x = tf.where(mask < 0.5, x, tf.reverse(x, axis=[3]))
with tf.name_scope('FadeLOD'): # Smooth crossfade between consecutive levels-of-detail.
s = tf.shape(x)
y = tf.reshape(x, [-1, s[1], s[2]//2, 2, s[3]//2, 2])
y = tf.reduce_mean(y, axis=[3, 5], keepdims=True)
y = tf.tile(y, [1, 1, 1, 2, 1, 2])
y = tf.reshape(y, [-1, s[1], s[2], s[3]])
x = tfutil.lerp(x, y, lod - tf.floor(lod))
with tf.name_scope('UpscaleLOD'): # Upscale to match the expected input/output size of the networks.
s = tf.shape(x)
factor = tf.cast(2 ** tf.floor(lod), tf.int32)
x = tf.reshape(x, [-1, s[1], s[2], 1, s[3], 1])
x = tf.tile(x, [1, 1, 1, factor, 1, factor])
x = tf.reshape(x, [-1, s[1], s[2] * factor, s[3] * factor])
return x
#----------------------------------------------------------------------------
# Class for evaluating and storing the values of time-varying training parameters.
class TrainingSchedule:
def __init__(
self,
cur_nimg,
training_set,
lod_initial_resolution = 4, # Image resolution used at the beginning.
lod_training_kimg = 600, # Thousands of real images to show before doubling the resolution.
lod_transition_kimg = 600, # Thousands of real images to show when fading in new layers.
minibatch_base = 16, # Maximum minibatch size, divided evenly among GPUs.
minibatch_dict = {}, # Resolution-specific overrides.
max_minibatch_per_gpu = {}, # Resolution-specific maximum minibatch size per GPU.
G_lrate_base = 0.002, # Learning rate for the generator.
G_lrate_dict = {}, # Resolution-specific overrides.
D_lrate_base = 0.001, # Learning rate for the discriminator.
D_lrate_dict = {}, # Resolution-specific overrides.
tick_kimg_base = 160, # Default interval of progress snapshots.
tick_kimg_dict = {4: 160, 8:140, 16:120, 32:100, 64:80, 128:60, 256:40, 512:20, 1024:10}): # Resolution-specific overrides.
# Training phase.
self.kimg = cur_nimg / 1000.0
phase_dur = lod_training_kimg + lod_transition_kimg
phase_idx = int(np.floor(self.kimg / phase_dur)) if phase_dur > 0 else 0
phase_kimg = self.kimg - phase_idx * phase_dur
# Level-of-detail and resolution.
self.lod = training_set.resolution_log2
self.lod -= np.floor(np.log2(lod_initial_resolution))
self.lod -= phase_idx
if lod_transition_kimg > 0:
self.lod -= max(phase_kimg - lod_training_kimg, 0.0) / lod_transition_kimg
self.lod = max(self.lod, 0.0)
self.resolution = 2 ** (training_set.resolution_log2 - int(np.floor(self.lod)))
# Minibatch size.
self.minibatch = minibatch_dict.get(self.resolution, minibatch_base)
self.minibatch -= self.minibatch % config.num_gpus
if self.resolution in max_minibatch_per_gpu:
self.minibatch = min(self.minibatch, max_minibatch_per_gpu[self.resolution] * config.num_gpus)
# Other parameters.
self.G_lrate = G_lrate_dict.get(self.resolution, G_lrate_base)
self.D_lrate = D_lrate_dict.get(self.resolution, D_lrate_base)
self.tick_kimg = tick_kimg_dict.get(self.resolution, tick_kimg_base)
#----------------------------------------------------------------------------
# Main training script.
# To run, comment/uncomment appropriate lines in config.py and launch train.py.
def train_progressive_gan(
G_smoothing = 0.999, # Exponential running average of generator weights.
D_repeats = 1, # How many times the discriminator is trained per G iteration.
minibatch_repeats = 4, # Number of minibatches to run before adjusting training parameters.
reset_opt_for_new_lod = True, # Reset optimizer internal state (e.g. Adam moments) when new layers are introduced?
total_kimg = 15000, # Total length of the training, measured in thousands of real images.
mirror_augment = False, # Enable mirror augment?
drange_net = [-1,1], # Dynamic range used when feeding image data to the networks.
image_snapshot_ticks = 1, # How often to export image snapshots?
network_snapshot_ticks = 10, # How often to export network snapshots?
save_tf_graph = False, # Include full TensorFlow computation graph in the tfevents file?
save_weight_histograms = False, # Include weight histograms in the tfevents file?
resume_run_id = None, # Run ID or network pkl to resume training from, None = start from scratch.
resume_snapshot = None, # Snapshot index to resume training from, None = autodetect.
resume_kimg = 0.0, # Assumed training progress at the beginning. Affects reporting and training schedule.
resume_time = 0.0): # Assumed wallclock time at the beginning. Affects reporting.
maintenance_start_time = time.time()
training_set = dataset.load_dataset(data_dir=config.data_dir, verbose=True, **config.dataset)
# Construct networks.
with tf.device('/gpu:0'):
if resume_run_id is not None:
network_pkl = misc.locate_network_pkl(resume_run_id, resume_snapshot)
print('Loading networks from "%s"...' % network_pkl)
G, D, Gs, = misc.load_pkl(network_pkl)
else:
print('Constructing networks...')
G = tfutil.Network('G', num_channels=training_set.shape[0], resolution=training_set.shape[1], **config.G)
D = tfutil.Network('D', num_channels=training_set.shape[0], resolution=training_set.shape[1], **config.D)
Gs = G.clone('Gs')
Gs_update_op = Gs.setup_as_moving_average_of(G, beta=G_smoothing)
G.print_layers(); D.print_layers();
print('Building TensorFlow graph...')
with tf.name_scope('Inputs'):
lod_in = tf.placeholder(tf.float32, name='lod_in', shape=[])
lrate_in = tf.placeholder(tf.float32, name='lrate_in', shape=[])
minibatch_in = tf.placeholder(tf.int32, name='minibatch_in', shape=[])
minibatch_split = minibatch_in // config.num_gpus
reals, labels = training_set.get_minibatch_tf()
reals_split = tf.split(reals, config.num_gpus)
labels_split = tf.split(labels, config.num_gpus)
G_opt = tfutil.Optimizer(name='TrainG', learning_rate=lrate_in, **config.G_opt)
D_opt = tfutil.Optimizer(name='TrainD', learning_rate=lrate_in, **config.D_opt)
for gpu in range(config.num_gpus):
with tf.name_scope('GPU%d' % gpu), tf.device('/gpu:%d' % gpu):
G_gpu = G if gpu == 0 else G.clone(G.name + '_shadow')
D_gpu = D if gpu == 0 else D.clone(D.name + '_shadow')
lod_assign_ops = [tf.assign(G_gpu.find_var('lod'), lod_in), tf.assign(D_gpu.find_var('lod'), lod_in)]
reals_gpu = process_reals(reals_split[gpu], lod_in, mirror_augment, training_set.dynamic_range, drange_net)
labels_gpu = labels_split[gpu]
with tf.name_scope('G_loss'), tf.control_dependencies(lod_assign_ops):
G_loss = tfutil.call_func_by_name(G=G_gpu, D=D_gpu, opt=G_opt, training_set=training_set, minibatch_size=minibatch_split, reals=reals_gpu, **config.G_loss)
with tf.name_scope('D_loss'), tf.control_dependencies(lod_assign_ops):
D_loss = tfutil.call_func_by_name(G=G_gpu, D=D_gpu, opt=D_opt, training_set=training_set, minibatch_size=minibatch_split, reals=reals_gpu, labels=labels_gpu, **config.D_loss)
G_opt.register_gradients(tf.reduce_mean(G_loss), G_gpu.trainables)
D_opt.register_gradients(tf.reduce_mean(D_loss), D_gpu.trainables)
G_train_op = G_opt.apply_updates()
D_train_op = D_opt.apply_updates()
print('Setting up snapshot image grid...')
grid_size, grid_reals, grid_labels, grid_latents = setup_snapshot_image_grid(G, training_set, **config.grid)
sched = TrainingSchedule(total_kimg * 1000, training_set, **config.sched)
size= int(128)
real1= grid_reals[:,:, :(size),:(size)]
real2= grid_reals[:,:, (size):,:(size)]
real3= grid_reals[:,:, :(size),(size):]
real1=(real1.astype(np.float32)-127.5)/127.5
real2=(real2.astype(np.float32)-127.5)/127.5
real3=(real3.astype(np.float32)-127.5)/127.5
print('real3 shape' + str(real3.shape))
latents = np.random.randn(120, 3, 128, 128)
left = np.concatenate((real1, real2), axis=2)
right = np.concatenate((real3, latents), axis=2)
lat_and_cond = np.concatenate((left, right), axis=3)
fake_images_out_small = Gs.run(lat_and_cond, grid_labels, minibatch_size=120)
#print('Real3: '+ str(real3))
fake_image_out_right =np.concatenate((real3, fake_images_out_small), axis=2)
fake_image_out_left = np.concatenate((real1, real2), axis=2)
grid_fakes = np.concatenate((fake_image_out_left, fake_image_out_right), axis=3)
print('Setting up result dir...')
result_subdir = misc.create_result_subdir(config.result_dir, config.desc)
misc.save_image_grid(grid_reals, os.path.join(result_subdir, 'reals.png'), drange=training_set.dynamic_range, grid_size=grid_size)
misc.save_image_grid(grid_fakes, os.path.join(result_subdir, 'fakes%06d.png' % 0), drange=drange_net, grid_size=grid_size)
summary_log = tf.summary.FileWriter(result_subdir)
if save_tf_graph:
summary_log.add_graph(tf.get_default_graph())
if save_weight_histograms:
G.setup_weight_histograms(); D.setup_weight_histograms()
print('Training...')
cur_nimg = int(resume_kimg * 1000)
cur_tick = 0
tick_start_nimg = cur_nimg
tick_start_time = time.time()
train_start_time = tick_start_time - resume_time
prev_lod = -1.0
while cur_nimg < total_kimg * 1000:
# Choose training parameters and configure training ops.
sched = TrainingSchedule(cur_nimg, training_set, **config.sched)
training_set.configure(sched.minibatch, sched.lod)
if reset_opt_for_new_lod:
if np.floor(sched.lod) != np.floor(prev_lod) or np.ceil(sched.lod) != np.ceil(prev_lod):
G_opt.reset_optimizer_state(); D_opt.reset_optimizer_state();
prev_lod = sched.lod
# Run training ops.
for repeat in range(minibatch_repeats):
for _ in range(D_repeats):
tfutil.run([D_train_op, Gs_update_op], {lod_in: sched.lod, lrate_in: sched.D_lrate, minibatch_in: sched.minibatch})
cur_nimg += sched.minibatch
tfutil.run([G_train_op], {lod_in: sched.lod, lrate_in: sched.G_lrate, minibatch_in: sched.minibatch})
# Perform maintenance tasks once per tick.
done = (cur_nimg >= total_kimg * 1000)
if cur_nimg >= tick_start_nimg + sched.tick_kimg * 1000 or done:
cur_tick += 1
cur_time = time.time()
tick_kimg = (cur_nimg - tick_start_nimg) / 1000.0
tick_start_nimg = cur_nimg
tick_time = cur_time - tick_start_time
total_time = cur_time - train_start_time
maintenance_time = tick_start_time - maintenance_start_time
maintenance_start_time = cur_time
# Report progress.
print('tick %-5d kimg %-8.1f lod %-5.2f minibatch %-4d time %-12s sec/tick %-7.1f sec/kimg %-7.2f maintenance %.1f' % (
tfutil.autosummary('Progress/tick', cur_tick),
tfutil.autosummary('Progress/kimg', cur_nimg / 1000.0),
tfutil.autosummary('Progress/lod', sched.lod),
tfutil.autosummary('Progress/minibatch', sched.minibatch),
misc.format_time(tfutil.autosummary('Timing/total_sec', total_time)),
tfutil.autosummary('Timing/sec_per_tick', tick_time),
tfutil.autosummary('Timing/sec_per_kimg', tick_time / tick_kimg),
tfutil.autosummary('Timing/maintenance_sec', maintenance_time)))
tfutil.autosummary('Timing/total_hours', total_time / (60.0 * 60.0))
tfutil.autosummary('Timing/total_days', total_time / (24.0 * 60.0 * 60.0))
tfutil.save_summaries(summary_log, cur_nimg)
# Save snapshots.
if cur_tick % image_snapshot_ticks == 0 or done:
size= int(128)
real1= grid_reals[:,:, :(size),:(size)]
real2= grid_reals[:,:, (size):,:(size)]
real3= grid_reals[:,:, :(size),(size):]
real1=(real1.astype(np.float32)-127)/128
real2=(real2.astype(np.float32)-127)/128
real3=(real3.astype(np.float32)-127)/128
latents = np.random.randn(120, 3, 128, 128)
left = np.concatenate((real1, real2), axis=2)
right = np.concatenate((real3, latents), axis=2)
lat_and_cond = np.concatenate((left, right), axis=3)
fake_images_out_small = Gs.run(lat_and_cond, grid_labels, minibatch_size=sched.minibatch//config.num_gpus)
fake_image_out_right =np.concatenate((real3, fake_images_out_small), axis=2)
fake_image_out_left = np.concatenate((real1, real2), axis=2)
grid_fakes = np.concatenate((fake_image_out_left, fake_image_out_right), axis=3)
misc.save_image_grid(grid_fakes, os.path.join(result_subdir, 'fakes%06d.png' % (cur_nimg // 1000)), drange=drange_net, grid_size=grid_size)
if cur_tick % network_snapshot_ticks == 0 or done:
misc.save_pkl((G, D, Gs), os.path.join(result_subdir, 'network-snapshot-%06d.pkl' % (cur_nimg // 1000)))
# Record start time of the next tick.
tick_start_time = time.time()
# Write final results.
misc.save_pkl((G, D, Gs, E1, E2, E3, E), os.path.join(result_subdir, 'network-final.pkl'))
summary_log.close()
open(os.path.join(result_subdir, '_training-done.txt'), 'wt').close()
#----------------------------------------------------------------------------
# Main entry point.
# Calls the function indicated in config.py.
if __name__ == "__main__":
misc.init_output_logging()
np.random.seed(config.random_seed)
print('Initializing TensorFlow...')
os.environ.update(config.env)
tfutil.init_tf(config.tf_config)
print('Running %s()...' % config.train['func'])
tfutil.call_func_by_name(**config.train)
print('Exiting...')
#----------------------------------------------------------------------------